Light-Driven ZnO Brush-Shaped Self-Propelled Micromachines for Nitroaromatic Explosives Decomposition

Yulong Ying, Amir Masoud Pourrahimi, Carmen Lorena Manzanares-Palenzuela, Filip Novotny, Zdenek Sofer, Martin Pumera

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Self-propelled micromachines have recently attracted lots of attention for environmental remediation. Developing a large-scale but template-free fabrication of self-propelled rod/tubular micro/nanomotors is very crucial but still challenging. Here, a new strategy based on vertically aligned ZnO arrays is employed for the large-scale and template-free fabrication of self-propelled ZnO-based micromotors with H2O2-free light-driven propulsion ability. Brush-shaped ZnO-based micromotors with different diameters and lengths are fully studied, which present a fast response to multicycles UV light on/off switches with different interval times (2/5 s) in pure water and slow directional motion in aqueous hydrogen peroxide solution in the absence of UV light. Light-induced electrophoretic and self-diffusiophoretic effects are responsible for these two different self-motion behaviors under different conditions, respectively. In addition, the pH of the media and the presence of H2O2 show important effects on the motion behavior and microstructure of the ZnO-based micromotors. Finally, these novel ZnO-based brush-shaped micromotors are demonstrated in a proof-of-concept study on nitroaromatic explosive degradation, i.e., picric acid. This work opens a completely new avenue for the template-free fabrication of brush-shaped light-responsive micromotors on a large scale based on vertically aligned ZnO arrays.

Original languageEnglish
Article number1902944
Issue number27
Publication statusPublished - 2020 Jul 1

Bibliographical note

Funding Information:
This work was supported by the project Advanced Functional Nanorobots (Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR). Z.S. was supported by Czech Science Foundation (GACR No. 17–11456S).

Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biomaterials
  • Chemistry(all)
  • Materials Science(all)


Dive into the research topics of 'Light-Driven ZnO Brush-Shaped Self-Propelled Micromachines for Nitroaromatic Explosives Decomposition'. Together they form a unique fingerprint.

Cite this