Abstract
Contactless sample confinement would enable a whole host of new studies in developmental biology and neuroscience, in particular, when combined with long-term, wide-field optical imaging. To achieve this goal, we demonstrate a contactless acoustic gradient force trap for sample confinement in light sheet microscopy. Our approach allows the integration of real-time environmentally controlled experiments with wide-field low photo-toxic imaging, which we demonstrate on a variety of marine animal embryos and larvae. To illustrate the key advantages of our approach, we provide quantitative data for the dynamic response of the heartbeat of zebrafish larvae to verapamil and norepinephrine, which are known to affect cardiovascular function. Optical flow analysis allows us to explore the cardiac cycle of the zebrafish and determine the changes in contractile volume within the heart. Overcoming the restrictions of sample immobilisation and mounting can open up a broad range of studies, with real-time drug-based assays and biomechanical analyses.
Original language | English |
---|---|
Article number | 669 |
Journal | Nature communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2019 Dec 1 |
Bibliographical note
Funding Information:The authors thank Dr. Natacha Aguilar de Soto for the ascidian embryos. The authors thank the UK Engineering and Physical Sciences Research Council (EPSRC) (Grant numbers EP/P030017/1, EP/M000869/1 and EP/R004854/1) for funding. Work in the Somorjai lab is supported by the Wellcome Trust ISSF, the RS Macdonald Trust Charitable and EU Horizon 2020 INFRADEV “CORBEL” (Grant number 654248).
Publisher Copyright:
© 2019, The Author(s).
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Physics and Astronomy(all)