Local Critic Training of Deep Neural Networks

Hojung Lee, Jong Seok Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper proposes a novel approach to train deep neural networks by unlocking the layer-wise dependency of backpropagation training. The approach employs additional modules called local critic networks besides the main network model to be trained, which are used to obtain error gradients without complete feedforward and backward propagation processes. We propose a cascaded learning strategy for these local networks. In addition, the approach is also useful from multi-model perspectives, including structural optimization of neural networks, computationally efficient progressive inference, and ensemble classification for performance improvement. Experimental results show the effectiveness of the proposed approach and suggest guidelines for determining appropriate algorithm parameters.

Original languageEnglish
Title of host publication2019 International Joint Conference on Neural Networks, IJCNN 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728119854
DOIs
Publication statusPublished - 2019 Jul
Event2019 International Joint Conference on Neural Networks, IJCNN 2019 - Budapest, Hungary
Duration: 2019 Jul 142019 Jul 19

Publication series

NameProceedings of the International Joint Conference on Neural Networks
Volume2019-July

Conference

Conference2019 International Joint Conference on Neural Networks, IJCNN 2019
CountryHungary
CityBudapest
Period19/7/1419/7/19

Bibliographical note

Funding Information:
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (NRF-2016R1E1A1A01943283).

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Local Critic Training of Deep Neural Networks'. Together they form a unique fingerprint.

Cite this