Low Voltage, low power, inverter-based switched-capacitor delta-sigma modulator

Research output: Contribution to journalArticle

200 Citations (Scopus)


An operational transconductance amplifier (OTA) is a major building block and consumes most of the power in switched-capacitor (SC) circuits, but it is difficult to design low-voltage OTAs in scaled CMOS technologies. Instead of using an OTA, this paper proposes an inverter-based SC circuit and its application to low-voltage, low-power delta-sigma $(\Delta \Sigma)$ modulators. Detailed analysis and design optimizations are also provided. Three inverter-based $\Delta \Sigma$ modulators are implemented for an implantable pacemaker, a CMOS image sensor, and an audio codec. The modulator-I for an implantable pacemaker achieves 65-dB peak-SNDR for 120-Hz bandwidth consuming 0.73 $\mu$ W with 1.5 V supply. The modulator-II for a CMOS image sensor implemented with 320-channel parallel ADC architecture achieves 63-dB peak-SNDR for 8-kHz bandwidth consuming 5.6$\ \mu$W for each channel with 1.2-V supply. The modulator-III for an audio codec achieves 81-dB peak-SNDR with 20-kHz bandwidth consuming 36 $\mu$W with 0.7-V supply. The prototype $\Delta \Sigma$ modulators achieved high power efficiency maintaining sufficient performances for practical applications.

Original languageEnglish
Article number4768910
Pages (from-to)458-472
Number of pages15
JournalIEEE Journal of Solid-State Circuits
Issue number2
Publication statusPublished - 2009 Feb 1


All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Cite this