Lowerature Ohmic Contact to Monolayer MoS2 by van der Waals Bonded Co/h-BN Electrodes

Xu Cui, En Min Shih, Luis A. Jauregui, Sang Hoon Chae, Young Duck Kim, Baichang Li, Dongjea Seo, Kateryna Pistunova, Jun Yin, Ji Hoon Park, Heon Jin Choi, Young Hee Lee, Kenji Watanabe, Takashi Taniguchi, Philip Kim, Cory R. Dean, James C. Hone

Research output: Contribution to journalArticlepeer-review

117 Citations (Scopus)

Abstract

Monolayer MoS2, among many other transition metal dichalcogenides, holds great promise for future applications in nanoelectronics and optoelectronics due to its ultrathin nature, flexibility, sizable band gap, and unique spin-valley coupled physics. However, careful study of these properties at low temperature has been hindered by an inability to achieve lowerature Ohmic contacts to monolayer MoS2, particularly at low carrier densities. In this work, we report a new contact scheme that utilizes cobalt (Co) with a monolayer of hexagonal boron nitride (h-BN) that has the following two functions: modifies the work function of Co and acts as a tunneling barrier. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kÎ.μm at a carrier density of 5.3 × 1012/cm2. This further allows us to observe Shubnikov-de Haas oscillations in monolayer MoS2 at much lower carrier densities compared to previous work.

Original languageEnglish
Pages (from-to)4781-4786
Number of pages6
JournalNano letters
Volume17
Issue number8
DOIs
Publication statusPublished - 2017 Aug 9

Bibliographical note

Publisher Copyright:
© 2017 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Lowerature Ohmic Contact to Monolayer MoS<sub>2</sub> by van der Waals Bonded Co/h-BN Electrodes'. Together they form a unique fingerprint.

Cite this