LP-WaveNet: Linear Prediction-based WaveNet Speech Synthesis

Min Jae Hwang, Frank Soong, Eunwoo Song, Xi Wang, Hyeonjoo Kang, Hong Goo Kang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose a linear prediction (LP)-based wave-form generation method via WaveNet vocoding framework. A WaveNet-based neural vocoder has significantly improved the quality of parametric text-to-speech (TTS) systems. However, it is challenging to effectively train the neural vocoder when the target database contains massive amount of acoustical information such as prosody, style or expressiveness. As a solution, the approaches that only generate the vocal source component by a neural vocoder have been proposed. However, they tend to generate synthetic noise because the vocal source component is independently handled without considering the entire speech production process; where it is inevitable to come up with a mismatch between vocal source and vocal tract filter. To address this problem, we propose an LP-WaveNet vocoder, where the complicated interactions between vocal source and vocal tract components are jointly trained within a mixture density networkbased WaveNet model. The experimental results verify that the proposed system outperforms the conventional WaveNet vocoders both objectively and subjectively. In particular, the proposed method achieves 4.47 MOS within the TTS framework.

Original languageEnglish
Title of host publication2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages810-814
Number of pages5
ISBN (Electronic)9789881476883
Publication statusPublished - 2020 Dec 7
Event2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Virtual, Auckland, New Zealand
Duration: 2020 Dec 72020 Dec 10

Publication series

Name2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Proceedings

Conference

Conference2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020
Country/TerritoryNew Zealand
CityVirtual, Auckland
Period20/12/720/12/10

Bibliographical note

Funding Information:
VII. ACKNOWLEDGEMENTS The work was supported by Clova Voice, NAVER Corp., Seongnam, Korea, and partially performed when the first author was an intern at Microsoft Research Asia.

Publisher Copyright:
© 2020 APSIPA.

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture
  • Signal Processing
  • Decision Sciences (miscellaneous)
  • Instrumentation

Fingerprint

Dive into the research topics of 'LP-WaveNet: Linear Prediction-based WaveNet Speech Synthesis'. Together they form a unique fingerprint.

Cite this