LT-OCF: Learnable-Time ODE-based Collaborative Filtering

Jeongwhan Choi, Jinsung Jeon, Noseong Park

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Collaborative filtering (CF) is a long-standing problem of recommender systems. Many novel methods have been proposed, ranging from classical matrix factorization to recent graph convolutional network-based approaches. After recent fierce debates, researchers started to focus on linear graph convolutional networks (GCNs) with a layer combination, which show state-of-the-art accuracy in many datasets. In this work, we extend them based on neural ordinary differential equations (NODEs), because the linear GCN concept can be interpreted as a differential equation, and present the method of Learnable-Time ODE-based Collaborative Filtering (LT-OCF). The main novelty in our method is that after redesigning linear GCNs on top of the NODE regime, i) we learn the optimal architecture rather than relying on manually designed ones, ii) we learn smooth ODE solutions that are considered suitable for CF, and iii) we test with various ODE solvers that internally build a diverse set of neural network connections. We also present a novel training method specialized to our method. In our experiments with three benchmark datasets, our method consistently outperforms existing methods in terms of various evaluation metrics. One more important discovery is that our best accuracy was achieved by dense connections.

Original languageEnglish
Title of host publicationCIKM 2021 - Proceedings of the 30th ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages251-260
Number of pages10
ISBN (Electronic)9781450384469
DOIs
Publication statusPublished - 2021 Oct 26
Event30th ACM International Conference on Information and Knowledge Management, CIKM 2021 - Virtual, Online, Australia
Duration: 2021 Nov 12021 Nov 5

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference30th ACM International Conference on Information and Knowledge Management, CIKM 2021
Country/TerritoryAustralia
CityVirtual, Online
Period21/11/121/11/5

Bibliographical note

Funding Information:
Noseong Park is the corresponding author. This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-01361, Artificial Intelligence Graduate School Program (Yonsei University)).

Publisher Copyright:
© 2021 ACM.

All Science Journal Classification (ASJC) codes

  • Business, Management and Accounting(all)
  • Decision Sciences(all)

Fingerprint

Dive into the research topics of 'LT-OCF: Learnable-Time ODE-based Collaborative Filtering'. Together they form a unique fingerprint.

Cite this