Luminescent oxygen sensors with highly improved sensitivity based on a porous sensing film with increased oxygen accessibility and photoluminescence

Soyeon Lee, jin woo Park

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

In this study, we present the effects of the morphological modification of an oxygen-sensing film on improving the sensitivity of luminescent oxygen sensors. Pores were made inside the volume and on the external surface of the oxygen-sensing film consisting of platinum(II) octaethylporphyrin (PtOEP) oxygen-sensitive dye embedded in a polystyrene (PS) polymer matrix. The size of the pores with diameters from 300 nm to 1 μm was controlled through the phase separation of the ternary system of PS, polyethylene glycol (PEG), and chloroform. Photoluminescence (PL) intensity and oxygen accessibility of the oxygen-sensing film were considered the main factors affecting the sensitivity of the sensors. PL intensity was analyzed through the diffused reflectance and absorbance of the oxygen-sensing film. Oxygen accessibility was analyzed based on the Langmuir-Hill absorption theory by considering the sensitivity saturation behaviors of the oxygen-sensing film above the excitation light source intensity of 1000 cd/m2. The optimized porous-structured oxygen-sensing film showed 61% higher sensitivity than the solid oxygen-sensing film. According to the measurement results, the sensitivity enhancement in the porous sensing film was significantly more driven by the increase in oxygen accessible sites than the increase in PL intensity. Furthermore, the sensing film with pores only on its external surface and not inside its volume showed 72% enhanced sensitivity relative to the solid sensing film. Therefore, the external surface area of the sensing film affects the sensitivity of the oxygen-sensing film significantly more than the pores inside the volume of the sensing film because the external surface acts as an oxygen diffusion barrier that limits the amount of oxygen that can access the oxygen-sensitive dye embedded in the polymer matrix.

Original languageEnglish
Pages (from-to)364-377
Number of pages14
JournalSensors and Actuators, B: Chemical
Volume249
DOIs
Publication statusPublished - 2017 Jan 1

Fingerprint

Oxygen sensors
Photoluminescence
Oxygen
photoluminescence
sensitivity
sensors
oxygen
porosity
Polymer matrix
Polystyrenes
Coloring Agents
polystyrene
Dyes
dyes
Diffusion barriers
Ternary systems
Chloroform
Chlorine compounds
polymers
Platinum

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry

Cite this

@article{a32a09f2cbcf4dde9e3a0d3252fcd586,
title = "Luminescent oxygen sensors with highly improved sensitivity based on a porous sensing film with increased oxygen accessibility and photoluminescence",
abstract = "In this study, we present the effects of the morphological modification of an oxygen-sensing film on improving the sensitivity of luminescent oxygen sensors. Pores were made inside the volume and on the external surface of the oxygen-sensing film consisting of platinum(II) octaethylporphyrin (PtOEP) oxygen-sensitive dye embedded in a polystyrene (PS) polymer matrix. The size of the pores with diameters from 300 nm to 1 μm was controlled through the phase separation of the ternary system of PS, polyethylene glycol (PEG), and chloroform. Photoluminescence (PL) intensity and oxygen accessibility of the oxygen-sensing film were considered the main factors affecting the sensitivity of the sensors. PL intensity was analyzed through the diffused reflectance and absorbance of the oxygen-sensing film. Oxygen accessibility was analyzed based on the Langmuir-Hill absorption theory by considering the sensitivity saturation behaviors of the oxygen-sensing film above the excitation light source intensity of 1000 cd/m2. The optimized porous-structured oxygen-sensing film showed 61{\%} higher sensitivity than the solid oxygen-sensing film. According to the measurement results, the sensitivity enhancement in the porous sensing film was significantly more driven by the increase in oxygen accessible sites than the increase in PL intensity. Furthermore, the sensing film with pores only on its external surface and not inside its volume showed 72{\%} enhanced sensitivity relative to the solid sensing film. Therefore, the external surface area of the sensing film affects the sensitivity of the oxygen-sensing film significantly more than the pores inside the volume of the sensing film because the external surface acts as an oxygen diffusion barrier that limits the amount of oxygen that can access the oxygen-sensitive dye embedded in the polymer matrix.",
author = "Soyeon Lee and Park, {jin woo}",
year = "2017",
month = "1",
day = "1",
doi = "10.1016/j.snb.2017.04.112",
language = "English",
volume = "249",
pages = "364--377",
journal = "Sensors and Actuators, B: Chemical",
issn = "0925-4005",
publisher = "Elsevier",

}

TY - JOUR

T1 - Luminescent oxygen sensors with highly improved sensitivity based on a porous sensing film with increased oxygen accessibility and photoluminescence

AU - Lee, Soyeon

AU - Park, jin woo

PY - 2017/1/1

Y1 - 2017/1/1

N2 - In this study, we present the effects of the morphological modification of an oxygen-sensing film on improving the sensitivity of luminescent oxygen sensors. Pores were made inside the volume and on the external surface of the oxygen-sensing film consisting of platinum(II) octaethylporphyrin (PtOEP) oxygen-sensitive dye embedded in a polystyrene (PS) polymer matrix. The size of the pores with diameters from 300 nm to 1 μm was controlled through the phase separation of the ternary system of PS, polyethylene glycol (PEG), and chloroform. Photoluminescence (PL) intensity and oxygen accessibility of the oxygen-sensing film were considered the main factors affecting the sensitivity of the sensors. PL intensity was analyzed through the diffused reflectance and absorbance of the oxygen-sensing film. Oxygen accessibility was analyzed based on the Langmuir-Hill absorption theory by considering the sensitivity saturation behaviors of the oxygen-sensing film above the excitation light source intensity of 1000 cd/m2. The optimized porous-structured oxygen-sensing film showed 61% higher sensitivity than the solid oxygen-sensing film. According to the measurement results, the sensitivity enhancement in the porous sensing film was significantly more driven by the increase in oxygen accessible sites than the increase in PL intensity. Furthermore, the sensing film with pores only on its external surface and not inside its volume showed 72% enhanced sensitivity relative to the solid sensing film. Therefore, the external surface area of the sensing film affects the sensitivity of the oxygen-sensing film significantly more than the pores inside the volume of the sensing film because the external surface acts as an oxygen diffusion barrier that limits the amount of oxygen that can access the oxygen-sensitive dye embedded in the polymer matrix.

AB - In this study, we present the effects of the morphological modification of an oxygen-sensing film on improving the sensitivity of luminescent oxygen sensors. Pores were made inside the volume and on the external surface of the oxygen-sensing film consisting of platinum(II) octaethylporphyrin (PtOEP) oxygen-sensitive dye embedded in a polystyrene (PS) polymer matrix. The size of the pores with diameters from 300 nm to 1 μm was controlled through the phase separation of the ternary system of PS, polyethylene glycol (PEG), and chloroform. Photoluminescence (PL) intensity and oxygen accessibility of the oxygen-sensing film were considered the main factors affecting the sensitivity of the sensors. PL intensity was analyzed through the diffused reflectance and absorbance of the oxygen-sensing film. Oxygen accessibility was analyzed based on the Langmuir-Hill absorption theory by considering the sensitivity saturation behaviors of the oxygen-sensing film above the excitation light source intensity of 1000 cd/m2. The optimized porous-structured oxygen-sensing film showed 61% higher sensitivity than the solid oxygen-sensing film. According to the measurement results, the sensitivity enhancement in the porous sensing film was significantly more driven by the increase in oxygen accessible sites than the increase in PL intensity. Furthermore, the sensing film with pores only on its external surface and not inside its volume showed 72% enhanced sensitivity relative to the solid sensing film. Therefore, the external surface area of the sensing film affects the sensitivity of the oxygen-sensing film significantly more than the pores inside the volume of the sensing film because the external surface acts as an oxygen diffusion barrier that limits the amount of oxygen that can access the oxygen-sensitive dye embedded in the polymer matrix.

UR - http://www.scopus.com/inward/record.url?scp=85018359349&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85018359349&partnerID=8YFLogxK

U2 - 10.1016/j.snb.2017.04.112

DO - 10.1016/j.snb.2017.04.112

M3 - Article

AN - SCOPUS:85018359349

VL - 249

SP - 364

EP - 377

JO - Sensors and Actuators, B: Chemical

JF - Sensors and Actuators, B: Chemical

SN - 0925-4005

ER -