Magnetic Hydrogel Microrobots as Insecticide Carriers for In Vivo Insect Pest Control in Plants

Roberto Maria-Hormigos, Carmen C. Mayorga-Martinez, Martin Pumera

Research output: Contribution to journalArticlepeer-review


The cost of insect pests to human society exceeds USD70 billion per year worldwide in goods, livestock, and healthcare services. Therefore, pesticides are needed to prevent insect damage despite the secondary effects of these chemical agents on non-target organisms. Chemicals encapsulation into carriers is a promising strategy to improve their specificity. Hydrogel-based microrobots show enormous potential as chemical carriers. Herein, hydrogel chitosan magnetic microrobots encapsulating ethyl parathion (EP)-CHI@Fe3O4 are used to efficiently kill mealworm larvae (Tenebrio molitor). The mechanism takes advantage of pH-responsive chitosan degradation at Tenebrio molitor midgut pH to efficiently deliver pesticide into the mealworm intestinal tract in just 2 h. It is observed that under a transversal rotating magnetic field, mealworm populations show higher mortality after 30 min compared to free pesticide. This example of active pesticide carriers based on soft microrobots opens new avenues for microrobots applications in the agrochemical field as active chemical carriers.

Original languageEnglish
Publication statusAccepted/In press - 2022

Bibliographical note

Funding Information:
This work was supported by the project Advanced Functional Nanorobots (Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR). R.M.H. acknowledges the financial support of the Grant Agency of the Czech Republic no. 22‐04132I.

Publisher Copyright:
© 2022 Wiley-VCH GmbH.

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Chemistry(all)
  • Biomaterials
  • Materials Science(all)


Dive into the research topics of 'Magnetic Hydrogel Microrobots as Insecticide Carriers for In Vivo Insect Pest Control in Plants'. Together they form a unique fingerprint.

Cite this