Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer

Martina Ussia, Mario Urso, Monika Kratochvilova, Jiri Navratil, Jan Balvan, Carmen C. Mayorga-Martinez, Jan Vyskocil, Michal Masarik, Martin Pumera

Research output: Contribution to journalArticlepeer-review


Prostate cancer is the most commonly diagnosed tumor disease in men, and its treatment is still a big challenge in standard oncology therapy. Magnetically actuated microrobots represent the most promising technology in modern nanomedicine, offering the advantage of wireless guidance, effective cell penetration, and non-invasive actuation. Here, new biodegradable magnetically actuated zinc/cystine-based microrobots for in situ treatment of prostate cancer cells are reported. The microrobots are fabricated via metal-ion-mediated self-assembly of the amino acid cystine encapsulating superparamagnetic Fe3O4 nanoparticles (NPs) during the synthesis, which allows their precise manipulation by a rotating magnetic field. Inside the cells, the typical enzymatic reducing environment favors the disassembly of the aminoacidic chemical structure due to the cleavage of cystine disulfide bonds and disruption of non-covalent interactions with the metal ions, as demonstrated by in vitro experiments with reduced nicotinamide adenine dinucleotide (NADH). In this way, the cystine microrobots served for site-specific delivery of Zn2+ ions responsible for tumor cell killing via a “Trojan horse effect”. This work presents a new concept of cell internalization exploiting robotic systems’ self-degradation, proposing a step forward in non-invasive cancer therapy.

Original languageEnglish
Publication statusAccepted/In press - 2023

Bibliographical note

Funding Information:
This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR). This work was supported by the ESF under the project CZ.02.2.69/0.0/0.0/18_053/0016962. CzechNanoLab project LM2018110 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements/sample fabrication at CEITEC Nano Research Infrastructure. The authors also acknowledge support from the Ministry of Health of the Czech Republic (NU21‐08‐00407), by Internal grant of Masaryk university (MUNI/IGA/0954/2021), and by funds from Specific University Research Grant, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2023 (MUNI/A/1370/2022 and MUNI/A/1343/2022). The authors would like to thank Dr. C. M. Oral for his support with STEM images.

Publisher Copyright:
© 2023 The Authors. Small published by Wiley-VCH GmbH.

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Chemistry(all)
  • Biomaterials
  • Materials Science(all)


Dive into the research topics of 'Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer'. Together they form a unique fingerprint.

Cite this