Marginal hazards model for case-cohort studies with multiple disease outcomes

S. Kang, J. Cai

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Case-cohort study designs are widely used to reduce the cost of large cohort studies while achieving the same goals, especially when the disease rate is low. A key advantage of the case-cohort study design is its capacity to use the same subcohort for several diseases or for several subtypes of disease. In order to compare the effect of a risk factor on different types of diseases, times to different events need to be modelled simultaneously. Valid statistical methods that take the correlations among the outcomes from the same subject into account need to be developed. To this end, we consider marginal proportional hazards regression models for case-cohort studies with multiple disease outcomes. We also consider generalized case-cohort designs that do not require sampling all the cases, which is more realistic for multiple disease outcomes. We propose an estimating equation approach for parameter estimation with two different types of weights. Consistency and asymptotic normality of the proposed estimators are established. Large sample approximation works well in small samples in simulation studies. The proposed methods are applied to the Busselton Health Study.

Original languageEnglish
Pages (from-to)887-901
Number of pages15
JournalBiometrika
Volume96
Issue number4
DOIs
Publication statusPublished - 2009 Dec

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Mathematics(all)
  • Agricultural and Biological Sciences (miscellaneous)
  • Agricultural and Biological Sciences(all)
  • Statistics, Probability and Uncertainty
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Marginal hazards model for case-cohort studies with multiple disease outcomes'. Together they form a unique fingerprint.

  • Cite this