Matching asymptotics in path-dependent option pricing

Sang Hyeon Park, Jeong Hoon Kim, Sun Yong Choi

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

The valuation of path-dependent options in finance creates many interesting mathematical challenges. Among them are a large Delta and Gamma near the expiry leading to a big error in pricing those exotic options as well as European vanilla options. Also, the higher order corrections of the asymptotic prices of the derivatives in some stochastic volatility models are difficult to be evaluated. In this paper we use the method of matched asymptotic expansions to obtain more practical values of lookback and barrier option prices near the expiry. Our results verify that matching asymptotics is a useful tool for PDE methods in path-dependent option pricing.

Original languageEnglish
Pages (from-to)568-587
Number of pages20
JournalJournal of Mathematical Analysis and Applications
Volume367
Issue number2
DOIs
Publication statusPublished - 2010 Jul 15

Fingerprint

Option Pricing
Lookback Options
Barrier Options
European Options
Path
Matched Asymptotic Expansions
Stochastic Volatility Model
Dependent
Finance
Stochastic models
Valuation
Pricing
Costs
Higher Order
Verify
Derivatives
Derivative

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

Cite this

Park, Sang Hyeon ; Kim, Jeong Hoon ; Choi, Sun Yong. / Matching asymptotics in path-dependent option pricing. In: Journal of Mathematical Analysis and Applications. 2010 ; Vol. 367, No. 2. pp. 568-587.
@article{b4b8262373f24089b18700022c010766,
title = "Matching asymptotics in path-dependent option pricing",
abstract = "The valuation of path-dependent options in finance creates many interesting mathematical challenges. Among them are a large Delta and Gamma near the expiry leading to a big error in pricing those exotic options as well as European vanilla options. Also, the higher order corrections of the asymptotic prices of the derivatives in some stochastic volatility models are difficult to be evaluated. In this paper we use the method of matched asymptotic expansions to obtain more practical values of lookback and barrier option prices near the expiry. Our results verify that matching asymptotics is a useful tool for PDE methods in path-dependent option pricing.",
author = "Park, {Sang Hyeon} and Kim, {Jeong Hoon} and Choi, {Sun Yong}",
year = "2010",
month = "7",
day = "15",
doi = "10.1016/j.jmaa.2010.01.042",
language = "English",
volume = "367",
pages = "568--587",
journal = "Journal of Mathematical Analysis and Applications",
issn = "0022-247X",
publisher = "Academic Press Inc.",
number = "2",

}

Matching asymptotics in path-dependent option pricing. / Park, Sang Hyeon; Kim, Jeong Hoon; Choi, Sun Yong.

In: Journal of Mathematical Analysis and Applications, Vol. 367, No. 2, 15.07.2010, p. 568-587.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Matching asymptotics in path-dependent option pricing

AU - Park, Sang Hyeon

AU - Kim, Jeong Hoon

AU - Choi, Sun Yong

PY - 2010/7/15

Y1 - 2010/7/15

N2 - The valuation of path-dependent options in finance creates many interesting mathematical challenges. Among them are a large Delta and Gamma near the expiry leading to a big error in pricing those exotic options as well as European vanilla options. Also, the higher order corrections of the asymptotic prices of the derivatives in some stochastic volatility models are difficult to be evaluated. In this paper we use the method of matched asymptotic expansions to obtain more practical values of lookback and barrier option prices near the expiry. Our results verify that matching asymptotics is a useful tool for PDE methods in path-dependent option pricing.

AB - The valuation of path-dependent options in finance creates many interesting mathematical challenges. Among them are a large Delta and Gamma near the expiry leading to a big error in pricing those exotic options as well as European vanilla options. Also, the higher order corrections of the asymptotic prices of the derivatives in some stochastic volatility models are difficult to be evaluated. In this paper we use the method of matched asymptotic expansions to obtain more practical values of lookback and barrier option prices near the expiry. Our results verify that matching asymptotics is a useful tool for PDE methods in path-dependent option pricing.

UR - http://www.scopus.com/inward/record.url?scp=77949570072&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77949570072&partnerID=8YFLogxK

U2 - 10.1016/j.jmaa.2010.01.042

DO - 10.1016/j.jmaa.2010.01.042

M3 - Article

AN - SCOPUS:77949570072

VL - 367

SP - 568

EP - 587

JO - Journal of Mathematical Analysis and Applications

JF - Journal of Mathematical Analysis and Applications

SN - 0022-247X

IS - 2

ER -