Measurement of D0, D+, D*+ and D s + production in Pb-Pb collisions at √sNN=5.02 TeV

The ALICE Collaboration

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

We report measurements of the production of prompt D0, D+, D*+ and Ds + mesons in Pb–Pb collisions at the centre-of-mass energy per nucleon-nucleon pair sNN=5.02 TeV, in the centrality classes 0–10%, 30–50% and 60–80%. The D-meson production yields are measured at mid-rapidity (|y| < 0.5) as a function of transverse momentum (pT). The pT intervals covered in central collisions are: 1 < pT< 50 GeV/c for D0, 2 < pT< 50GeV/c for D+, 3 < pT< 50GeV/c for D*+, and 4 < pT< 16GeV/c for Ds + mesons. The nuclear modification factors (RAA) for non-strange D mesons (D0, D+, D*+) show minimum values of about 0.2 for pT = 6–10 GeV/c in the most central collisions and are compatible within uncertainties with those measured at sNN=2.76 TeV. For Ds + mesons, the values of RAA are larger than those of non-strange D mesons, but compatible within uncertainties. In central collisions the average RAA of non-strange D mesons is compatible with that of charged particles for pT> 8 GeV/c, while it is larger at lower pT. The nuclear modification factors for strange and non-strange D mesons are also compared to theoretical models with different implementations of in-medium energy loss.[Figure not available: see fulltext.]

Original languageEnglish
Article number174
JournalJournal of High Energy Physics
Volume2018
Issue number10
DOIs
Publication statusPublished - 2018 Oct 1

Bibliographical note

Funding Information:
Open Access, Copyright CERN, for the benefit of the ALICE Collaboration. Article funded by SCOAP3.

Funding Information:
teams for the outstanding performance of the LHC complex. The ALICE collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Tech-nologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundacão de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science and Education, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research — Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi — Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Or-ganisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National

Publisher Copyright:
© 2018, The Author(s).

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Measurement of D<sup>0</sup>, D<sup>+</sup>, D<sup>*+</sup> and D <sub>s</sub> <sup>+</sup> production in Pb-Pb collisions at √sNN=5.02 TeV'. Together they form a unique fingerprint.

Cite this