Measurement of magnetic field properties of a 3.0 T/m air-core HTS quadrupole magnet and optimal shape design to increase the critical current reduced by the incident magnetic field

Yojong Choi, Junseong Kim, Geonwoo Baek, Seunghak Han, Woo Seung Lee, Tae Kuk Ko

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Air-core high-temperature superconducting quadrupole magnets (AHQMs) differ from conventional iron-core quadrupole magnets, in that their iron cores are removed, and instead high-temperature superconductors (HTSs) are applied. The high operating temperature and high thermal stability of HTS magnets can improve their thermodynamic cooling efficiency. Thus, HTS magnets are more suitable than low temperature superconducting magnets for withstanding radiation and high heat loads in the hot cells of accelerators. AHQMs are advantageous because they are compact, light, and free from the hysteresis of ferromagnetic materials, due to the removal of the iron-core. To verify the feasibility of the use of AHQMs, we designed and fabricated a 3.0 T/m AHQM. The magnetic field properties of the fabricated AHQM were evaluated. Additionally, the characteristics of the air-core model and iron-core model of 9.0 T/m were compared in the scale for practical operation. In comparison with the iron-core model, AHQM significantly reduces the critical current (IC) due to the strong magnetic field inside the coil. In this study, a method for the accurate calculation of IC is introduced, and the calculated results are compared with measured results. Furthermore, the optimal shape design of the AHQM to increase the critical current is introduced.

Original languageEnglish
Article number450
JournalElectronics (Switzerland)
Volume9
Issue number3
DOIs
Publication statusPublished - 2020 Mar

Bibliographical note

Funding Information:
Funding: This research was supported in part by Korea Electric Power Corporation. (Grant number: R17XA05_32). This work was supported in part by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry and Energy, Republic of Korea. (No. 20184030202270).

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Signal Processing
  • Hardware and Architecture
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Measurement of magnetic field properties of a 3.0 T/m air-core HTS quadrupole magnet and optimal shape design to increase the critical current reduced by the incident magnetic field'. Together they form a unique fingerprint.

Cite this