Measurements of mass-dependent azimuthal anisotropy in central p + Au, d + Au, and He 3 + Au collisions at sNN =200 GeV

PHENIX Collaboration

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

We present measurements of the transverse-momentum dependence of elliptic flow v2 for identified pions and (anti)protons at midrapidity (|η|<0.35), in 0%-5% central p+Au and He3+Au collisions at sNN=200 GeV. When taken together with previously published measurements in d+Au collisions at sNN=200 GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of v2(pT) in d+Au and He3+Au collisions, just as in large nucleus-nucleus (A+A) collisions, and a smaller splitting in p+Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low pT (<1.5GeV/c), but fail to describe various features at higher pT. In all systems, the v2 values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark (KET/nq), which was also seen previously in A+A collisions.

Original languageEnglish
Article number064904
JournalPhysical Review C
Volume97
Issue number6
DOIs
Publication statusPublished - 2018 Jun 11

Bibliographical note

Funding Information:
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), J. Bolyai Research Scholarship, EFOP, the New National Excellence Program (ÚNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the U.S.-Hungarian Fulbright Foundation, and the U.S.-Israel Binational Science Foundation.

Publisher Copyright:
© 2018 American Physical Society.

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'Measurements of mass-dependent azimuthal anisotropy in central p + Au, d + Au, and He 3 + Au collisions at sNN =200 GeV'. Together they form a unique fingerprint.

Cite this