TY - JOUR
T1 - Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson's disease
AU - Park, Hyun Jung
AU - Lee, Phil Hyu
AU - Bang, Oh Young
AU - Lee, Gwang
AU - Ahn, Young Hwan
PY - 2008/10
Y1 - 2008/10
N2 - Parkinson's disease is a common progressive neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. We investigated whether cell therapy with human mesenchymal stem cells (hMSCs) had a protective effect on progressive dopaminergic neuronal loss in vitro and in vivo. In primary mesencephalic cultures, hMSCs treatment significantly decreased MG-132-induced dopaminergic neuronal loss with a significant reduction of caspase-3 activity. In rats received systemic injection of MG-132, hMSCs treatment in MG-132-treated rats dramatically reduced the decline in the number of tyrosine hydroxylase (TH)-immunoreactive cells, showing an approximately 50% increase in the survival of TH-immunoreactive cells in the substantia nigra compared with the MG-132-treated group. Additionally, hMSC treatment significantly decreased OX-6 immunoreactivity and caspase-3 activity. Histological analysis showed that the number of NuMA-positive cells was 1.7% of total injected hMSCs and 35.7% of these cells were double-stained with NuMA and TH. Adhesive-removal test showed that hMSCs administration in MG-132-treated rats had a tendency to decrease in the mean removal time. This study demonstrates that hMSCs treatment had a protective effect on progressive loss of dopaminergic neurons induced by MG-132 in vitro and in vivo. Complex mechanisms mediated by trophic effects of hMSCs and differentiation of hMSCs into functional TH-immunoreactive neurons may work in the neuroprotective process.
AB - Parkinson's disease is a common progressive neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. We investigated whether cell therapy with human mesenchymal stem cells (hMSCs) had a protective effect on progressive dopaminergic neuronal loss in vitro and in vivo. In primary mesencephalic cultures, hMSCs treatment significantly decreased MG-132-induced dopaminergic neuronal loss with a significant reduction of caspase-3 activity. In rats received systemic injection of MG-132, hMSCs treatment in MG-132-treated rats dramatically reduced the decline in the number of tyrosine hydroxylase (TH)-immunoreactive cells, showing an approximately 50% increase in the survival of TH-immunoreactive cells in the substantia nigra compared with the MG-132-treated group. Additionally, hMSC treatment significantly decreased OX-6 immunoreactivity and caspase-3 activity. Histological analysis showed that the number of NuMA-positive cells was 1.7% of total injected hMSCs and 35.7% of these cells were double-stained with NuMA and TH. Adhesive-removal test showed that hMSCs administration in MG-132-treated rats had a tendency to decrease in the mean removal time. This study demonstrates that hMSCs treatment had a protective effect on progressive loss of dopaminergic neurons induced by MG-132 in vitro and in vivo. Complex mechanisms mediated by trophic effects of hMSCs and differentiation of hMSCs into functional TH-immunoreactive neurons may work in the neuroprotective process.
UR - http://www.scopus.com/inward/record.url?scp=51849088599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51849088599&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2008.05589.x
DO - 10.1111/j.1471-4159.2008.05589.x
M3 - Article
C2 - 18665911
AN - SCOPUS:51849088599
VL - 107
SP - 141
EP - 151
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
SN - 0022-3042
IS - 1
ER -