Metabolic and cardiorespiratory responses to "the lactate clamp"

Benjamin F. Miller, Jill A. Fattor, Kevin A. Jacobs, Michael A. Horning, Sang Hoon Suh, Franco Navazio, George A. Brooks

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)


To evaluate the hypothesis that precursor supply limits gluconeogenesis (GNG) during exercise, we examined training-induced changes in glucose kinetics [rates of appearance (Ra) and disappearance (Rd)], oxidation (Rox), and recycling (Rr) with an exogenous lactate infusion to 3.5-4.0 mM during rest and to pretraining 65% peak O2 consumption (Vo2 peak) levels during exercise. Control and clamped trials (LC) were performed at rest pre-(PRR, PRR-LC) and posttraining (PoR, PoR-LC) and during exercise pre- (PREx) and posttraining at absolute (PoAB, PoAB-LC) and relative (PoRL, PoRL-LC) intensities. Glucose Rr was not different in any rest or exercise condition. Glucose Ra did not differ as a result of LC. Glucose Rox was significantly decreased with LC at PoR (0.38 ± 0.03 vs. 0.56 ± 0.04 mg·kg-1·min-1) and PoAB (3.82 ± 0.51 vs. 5.0 ± 0.62 mg·kg-1·min-1). Percent glucose Rd oxidized decreased with all LC except PoRL-LC (PRR, 32%; PRR-LC, 22%; PoR, 27%; PoR-LC, 20%; PoAB, 95%; PoAB-LC, 77%), which resulted in a significant increase in oxidation from alternative carbohydrate (CHO) sources at rest and PoAB. We conclude that 1) increased arterial [lactate] did not increase glucose Rr measured during rest or exercise after training, 2) glucose disposal or production did not change with increased precursor supply, and 3) infusion of exogenous CHO in the form of lactate resulted in the decrease of glucose Rox.

Original languageEnglish
Pages (from-to)E889-E898
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Issue number5 46-5
Publication statusPublished - 2002 Nov 1

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Physiology (medical)


Dive into the research topics of 'Metabolic and cardiorespiratory responses to "the lactate clamp"'. Together they form a unique fingerprint.

Cite this