Metal-Free Visible-Light Photoactivated C 3 N 4 Bubble-Propelled Tubular Micromotors with Inherent Fluorescence and On/Off Capabilities

Katherine Villa, C. Lorena Manzanares Palenzuela, Zdeněk Sofer, Stanislava Matějková, Martin Pumera

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Photoactivated micromachines are at the forefront of the micro- and nanomotors field, as light is the main power source of many biological systems. Currently, this rapidly developing field is based on metal-containing segments, typically TiO 2 and precious metals. Herein, we present metal-free tubular micromotors solely based on graphitic carbon nitride, as highly scalable and low-cost micromachines that can be actuated by turning on/off the light source. These micromotors are able to move by a photocatalytic-induced bubble-propelled mechanism under visible light irradiation, without any metal-containing part or biochemical molecule on their structure. Furthermore, they exhibit interesting properties, such as a translucent tubular structure that allows the optical visualization of the O 2 bubble formation and migration inside the microtubes, as well as inherent fluorescence and adsorptive capability. Such properties were exploited for the removal of a heavy metal from contaminated water with the concomitant optical monitoring of its adsorption by fluorescence quenching. This multifunctional approach contributes to the development of metal-free bubble-propelled tubular micromotors actuated under visible light irradiation for environmental applications.

Original languageEnglish
Pages (from-to)12482-12491
Number of pages10
JournalACS Nano
Volume12
Issue number12
DOIs
Publication statusPublished - 2018 Dec 26

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Metal-Free Visible-Light Photoactivated C <sub>3</sub> N <sub>4</sub> Bubble-Propelled Tubular Micromotors with Inherent Fluorescence and On/Off Capabilities'. Together they form a unique fingerprint.

  • Cite this