Metal-organic-frameworks on 3D-printed electrodes: In situ electrochemical transformation towards the oxygen evolution reaction

Yulong Ying, Michelle Philippa Browne, Martin Pumera

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Metal-organic framework (MOF) derived materials are important alternatives for electrochemical energy storage and conversion, due to their highly large surface area, abundant active sites, and diversity in composition and structure. In this work, a controllable electrochemical transformation of ZIF-67 into active porous metal oxides is employed for the oxygen evolution reaction (OER). ZIF-67 is directly coated onto the surface of three-dimensional (3D) printed titanium (Ti) electrodes using a step-by-step in situ growth and then converted into cobalt oxide (Co3O4) by electrochemical cycling, designated as ZIF-67/Ti-E electrode. Raman spectroscopy, scanning electron microscopy (SEM), and cyclic voltammetry (CV) have been used to verify the electrochemical transformation from octahedral ZIF-67 to thin sheet-shaped Co3O4. This large-surface-area Co3O4, as well as the existence of CoIV species right before water oxidation, plays a critical role in enhanced OER performance under alkaline electrolysis conditions. The optimized ZIF-67/Ti-E electrode has demonstrated a better OER performance with a low overpotential of 360 mV at a current density of 10 mA cm-2 and excellent durability, compared with its counterparts produced by the widely popular calcination method. Our method provides a simple in situ, fast, mild, and energy-efficient approach to employ MOF-derived materials as promising OER catalysts using scaled-up 3D-printed electrodes.

Original languageEnglish
Pages (from-to)3732-3738
Number of pages7
JournalSustainable Energy and Fuels
Volume4
Issue number7
DOIs
Publication statusPublished - 2020 Jul

Bibliographical note

Funding Information:
M. P. acknowledges the nancial support of the Grant Agency of the Czech Republic (EXPRO: 19-26896X). M. P. B. acknowledges the European Structural and Investment Funds, OP RDE-funded project “ChemJets” (No. CZ.02.2.69/ 0.0/0.0/16_027/0008351). The authors would like to thank Z. Sofer for the help related to XRD and the calcination of the MOF 3D-printed electrode.

Publisher Copyright:
© The Royal Society of Chemistry.

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Metal-organic-frameworks on 3D-printed electrodes: In situ electrochemical transformation towards the oxygen evolution reaction'. Together they form a unique fingerprint.

Cite this