Microbial Reduction of Fe(III) in the Fifthian and Muloorina illites: Contrasting extents and rates of bioreduction

Jennifer L. Seabaugh, Hailiang Dong, Ravi K. Kukkadapu, Dennis D. Eberl, John P. Morton, Jinwook Kim

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Shewanella putrefaciens CN32 reduces Fe(III) within two illites which have different properties: the Fithian bulk fraction and the <0.2 μm fraction of Muloorina. The Fithian illite contained 4.6% (w/w) total Fe, 81% of which was Fe(III). It was dominated by illite with some jarosite (∼32% of the total Fe(III)) and goethite (11% of the total Fe(III)). The Muloorina illite was pure and contained 9.2% Fe, 93% of which was Fe(III). Illite suspensions were buffered at pH 7 and were inoculated with CN32 cells with lactate as the electron donor. Select treatments included anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle. Bioproduction of Fe(II) was determined by ferrozine analysis. The unreduced and bioreduced solids were characterized by Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy. The extent of Fe(III) reduction in the bulk Fithian illite was enhanced by the presence of AQDS (73%) with complete reduction of jarosite and goethite and partial reduction of illite. Mössbauer spectroscopy and chemical extraction determined that 21-25% of illite-associated Fe(III) was bioreduced. The extent of bioreduction was less in the absence of AQDS (63%) and only jarosite was completely reduced with partial reduction of goethite and illite. The XRD and TEM data revealed no significant illite dissolution or biogenic minerals, suggesting that illite was reduced in the solid state and biogenic Fe(II) from jarosite and goethite was either released to aqueous solution or adsorbed onto residual solid surfaces. In contrast, only 1% of the structural Fe(III) in Muloorina illite was bioreduced. The difference in the extent and rate of bioreduction between the two illites was probably due to the difference in layer charge and the total structural Fe content between the Fithian illite (0.56 per formula) and Muloorina illite (0.87). There may be other factors contributing to the observed differences, such as expandability, surface area and the arrangements of Fe in the octahedral sheets. The results of this study have important implications for predicting microbe-induced physical and chemical changes of clay minerals in soils and sediments.

Original languageEnglish
Pages (from-to)67-79
Number of pages13
JournalClays and Clay Minerals
Volume54
Issue number1
DOIs
Publication statusPublished - 2006 Feb 1

Fingerprint

illite
jarosite
goethite
anthraquinones
rate
transmission electron microscopy
spectroscopy
Ferrozine
biogenic mineral
X-ray diffraction
electrons
Shewanella putrefaciens
Transmission electron microscopy
electron
Electrons
clay minerals
Clay minerals
clay soils
mineral soils
aqueous solutions

All Science Journal Classification (ASJC) codes

  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)

Cite this

Seabaugh, Jennifer L. ; Dong, Hailiang ; Kukkadapu, Ravi K. ; Eberl, Dennis D. ; Morton, John P. ; Kim, Jinwook. / Microbial Reduction of Fe(III) in the Fifthian and Muloorina illites : Contrasting extents and rates of bioreduction. In: Clays and Clay Minerals. 2006 ; Vol. 54, No. 1. pp. 67-79.
@article{1510c9df44004cb5abffd8297ef5ef9f,
title = "Microbial Reduction of Fe(III) in the Fifthian and Muloorina illites: Contrasting extents and rates of bioreduction",
abstract = "Shewanella putrefaciens CN32 reduces Fe(III) within two illites which have different properties: the Fithian bulk fraction and the <0.2 μm fraction of Muloorina. The Fithian illite contained 4.6{\%} (w/w) total Fe, 81{\%} of which was Fe(III). It was dominated by illite with some jarosite (∼32{\%} of the total Fe(III)) and goethite (11{\%} of the total Fe(III)). The Muloorina illite was pure and contained 9.2{\%} Fe, 93{\%} of which was Fe(III). Illite suspensions were buffered at pH 7 and were inoculated with CN32 cells with lactate as the electron donor. Select treatments included anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle. Bioproduction of Fe(II) was determined by ferrozine analysis. The unreduced and bioreduced solids were characterized by M{\"o}ssbauer spectroscopy, X-ray diffraction and transmission electron microscopy. The extent of Fe(III) reduction in the bulk Fithian illite was enhanced by the presence of AQDS (73{\%}) with complete reduction of jarosite and goethite and partial reduction of illite. M{\"o}ssbauer spectroscopy and chemical extraction determined that 21-25{\%} of illite-associated Fe(III) was bioreduced. The extent of bioreduction was less in the absence of AQDS (63{\%}) and only jarosite was completely reduced with partial reduction of goethite and illite. The XRD and TEM data revealed no significant illite dissolution or biogenic minerals, suggesting that illite was reduced in the solid state and biogenic Fe(II) from jarosite and goethite was either released to aqueous solution or adsorbed onto residual solid surfaces. In contrast, only 1{\%} of the structural Fe(III) in Muloorina illite was bioreduced. The difference in the extent and rate of bioreduction between the two illites was probably due to the difference in layer charge and the total structural Fe content between the Fithian illite (0.56 per formula) and Muloorina illite (0.87). There may be other factors contributing to the observed differences, such as expandability, surface area and the arrangements of Fe in the octahedral sheets. The results of this study have important implications for predicting microbe-induced physical and chemical changes of clay minerals in soils and sediments.",
author = "Seabaugh, {Jennifer L.} and Hailiang Dong and Kukkadapu, {Ravi K.} and Eberl, {Dennis D.} and Morton, {John P.} and Jinwook Kim",
year = "2006",
month = "2",
day = "1",
doi = "10.1346/CCMN.2006.0540109",
language = "English",
volume = "54",
pages = "67--79",
journal = "Clays and Clay Minerals",
issn = "0009-8604",
publisher = "Clay Minerals Society",
number = "1",

}

Microbial Reduction of Fe(III) in the Fifthian and Muloorina illites : Contrasting extents and rates of bioreduction. / Seabaugh, Jennifer L.; Dong, Hailiang; Kukkadapu, Ravi K.; Eberl, Dennis D.; Morton, John P.; Kim, Jinwook.

In: Clays and Clay Minerals, Vol. 54, No. 1, 01.02.2006, p. 67-79.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Microbial Reduction of Fe(III) in the Fifthian and Muloorina illites

T2 - Contrasting extents and rates of bioreduction

AU - Seabaugh, Jennifer L.

AU - Dong, Hailiang

AU - Kukkadapu, Ravi K.

AU - Eberl, Dennis D.

AU - Morton, John P.

AU - Kim, Jinwook

PY - 2006/2/1

Y1 - 2006/2/1

N2 - Shewanella putrefaciens CN32 reduces Fe(III) within two illites which have different properties: the Fithian bulk fraction and the <0.2 μm fraction of Muloorina. The Fithian illite contained 4.6% (w/w) total Fe, 81% of which was Fe(III). It was dominated by illite with some jarosite (∼32% of the total Fe(III)) and goethite (11% of the total Fe(III)). The Muloorina illite was pure and contained 9.2% Fe, 93% of which was Fe(III). Illite suspensions were buffered at pH 7 and were inoculated with CN32 cells with lactate as the electron donor. Select treatments included anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle. Bioproduction of Fe(II) was determined by ferrozine analysis. The unreduced and bioreduced solids were characterized by Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy. The extent of Fe(III) reduction in the bulk Fithian illite was enhanced by the presence of AQDS (73%) with complete reduction of jarosite and goethite and partial reduction of illite. Mössbauer spectroscopy and chemical extraction determined that 21-25% of illite-associated Fe(III) was bioreduced. The extent of bioreduction was less in the absence of AQDS (63%) and only jarosite was completely reduced with partial reduction of goethite and illite. The XRD and TEM data revealed no significant illite dissolution or biogenic minerals, suggesting that illite was reduced in the solid state and biogenic Fe(II) from jarosite and goethite was either released to aqueous solution or adsorbed onto residual solid surfaces. In contrast, only 1% of the structural Fe(III) in Muloorina illite was bioreduced. The difference in the extent and rate of bioreduction between the two illites was probably due to the difference in layer charge and the total structural Fe content between the Fithian illite (0.56 per formula) and Muloorina illite (0.87). There may be other factors contributing to the observed differences, such as expandability, surface area and the arrangements of Fe in the octahedral sheets. The results of this study have important implications for predicting microbe-induced physical and chemical changes of clay minerals in soils and sediments.

AB - Shewanella putrefaciens CN32 reduces Fe(III) within two illites which have different properties: the Fithian bulk fraction and the <0.2 μm fraction of Muloorina. The Fithian illite contained 4.6% (w/w) total Fe, 81% of which was Fe(III). It was dominated by illite with some jarosite (∼32% of the total Fe(III)) and goethite (11% of the total Fe(III)). The Muloorina illite was pure and contained 9.2% Fe, 93% of which was Fe(III). Illite suspensions were buffered at pH 7 and were inoculated with CN32 cells with lactate as the electron donor. Select treatments included anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle. Bioproduction of Fe(II) was determined by ferrozine analysis. The unreduced and bioreduced solids were characterized by Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy. The extent of Fe(III) reduction in the bulk Fithian illite was enhanced by the presence of AQDS (73%) with complete reduction of jarosite and goethite and partial reduction of illite. Mössbauer spectroscopy and chemical extraction determined that 21-25% of illite-associated Fe(III) was bioreduced. The extent of bioreduction was less in the absence of AQDS (63%) and only jarosite was completely reduced with partial reduction of goethite and illite. The XRD and TEM data revealed no significant illite dissolution or biogenic minerals, suggesting that illite was reduced in the solid state and biogenic Fe(II) from jarosite and goethite was either released to aqueous solution or adsorbed onto residual solid surfaces. In contrast, only 1% of the structural Fe(III) in Muloorina illite was bioreduced. The difference in the extent and rate of bioreduction between the two illites was probably due to the difference in layer charge and the total structural Fe content between the Fithian illite (0.56 per formula) and Muloorina illite (0.87). There may be other factors contributing to the observed differences, such as expandability, surface area and the arrangements of Fe in the octahedral sheets. The results of this study have important implications for predicting microbe-induced physical and chemical changes of clay minerals in soils and sediments.

UR - http://www.scopus.com/inward/record.url?scp=33645455544&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33645455544&partnerID=8YFLogxK

U2 - 10.1346/CCMN.2006.0540109

DO - 10.1346/CCMN.2006.0540109

M3 - Article

AN - SCOPUS:33645455544

VL - 54

SP - 67

EP - 79

JO - Clays and Clay Minerals

JF - Clays and Clay Minerals

SN - 0009-8604

IS - 1

ER -