Micromachined elevated CPWs for high-performance microwave circuits

Sang No Lee, Joon Ik Lee, Yong Jun Kim, Jong Gwan Yook

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In this paper, micromachined elevated coplanar waveguides (ECPWs) based on CMOS-grade silicon with a thin film interface are presented. The respective signal lines for the ECPWs are 10 νm elevated into the air with supporting conductors so as to obtain low attenuation characteristics. For the designed ECPWs, it has been shown that a low loss transmission line is obtainable compared to the conventional CPW and a very low effective dielectric constant close to 2 could be realized by confining most of the electromagnetic fields in the lossless air layer. The overlapped configuration with an elevated signal line placed partially above the planar ground planes on the thin film interface yielded the best attenuation performance, i.e., about 0.29 dB mm-1 at 20 GHz. In addition, a Chebyshev low-pass filter (LPF) with 0.5 dB ripple is designed on the basis of the high-Z0 and low-Z0 ECPWs, and fabricated using the surface micromaching technique. The measured data show good agreement with the predicted values. It is expected that the suggested ECPWs can be applied to high-performance microwave/millimeterwave circuits by employing low-cost silicon surface micromachining technology.

Original languageEnglish
Article number012
Pages (from-to)2598-2602
Number of pages5
JournalJournal of Micromechanics and Microengineering
Volume16
Issue number12
DOIs
Publication statusPublished - 2006 Dec 1

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Micromachined elevated CPWs for high-performance microwave circuits'. Together they form a unique fingerprint.

  • Cite this