Micron-thick, worm-like, organized TiO2 films prepared using polystyrene-b-poly(2-vinyl pyridine) block copolymer and preformed TiO 2 for solid-state dye-sensitized solar cells

Sang Jin Kim, Dong Jun Kim, Sung Yeon Heo, Hyungju Ahn, Du Yeol Ryu, Jong Hak Kim

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Crack-free, micron-thick, worm-like mesoporous TiO2 films with an anatase phase, organized pores, and good interconnectivity were prepared by the self-assembly of anionically polymerized polystyrene-bpoly( 2-vinyl pyridine) (PS-b-P2VP) block copolymer and hydrophilically preformed TiO 2 nanocrystals. The polymer concentration and polymer:TiO2 ratio were carefully adjusted to systematically vary the TiO2 structure and evaluate the effects on the performances of solid-state dye-sensitized solar cells (ssDSSCs). As evaluated by scanning electron microscopy (SEM), grazing incidence small-angle X-ray scattering (GISAXS), and N2 adsorption-desorption measurements, the use of a higher polymer concentration (6 wt%) and a polymer:TiO2 ratio of 1:2, referred to as P6T2, resulted in a worm-like structure with a large surface area and smaller mesopores, whereas an aggregated structure with bimodal pores was obtained with a polymer:TiO2 ratio of 1:1. An efficiency of 4.0% was obtained at 100 mW/cm2 when using a 2.8 μm thick P6T2 film as a photoanode in a ssDSSC, which is much greater than the efficiency of commercially available paste (2.3%) with a similar film thickness. The higher efficiency of the P6T2 cells is due to the improved current density, resulting from its larger surface area, well-organized pores, and good interconnectivity.

Original languageEnglish
Pages (from-to)15-22
Number of pages8
JournalElectrochimica Acta
Volume105
DOIs
Publication statusPublished - 2013 Jan 1

Fingerprint

Polystyrenes
Pyridine
Block copolymers
Polymers
Ointments
X ray scattering
Thick films
Titanium dioxide
Nanocrystals
Self assembly
Film thickness
Desorption
Current density
Dye-sensitized solar cells
pyridine
Cracks
Adsorption
Scanning electron microscopy

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Electrochemistry

Cite this

@article{bfa96d6c9b3f4b9199d3235d1da8dd34,
title = "Micron-thick, worm-like, organized TiO2 films prepared using polystyrene-b-poly(2-vinyl pyridine) block copolymer and preformed TiO 2 for solid-state dye-sensitized solar cells",
abstract = "Crack-free, micron-thick, worm-like mesoporous TiO2 films with an anatase phase, organized pores, and good interconnectivity were prepared by the self-assembly of anionically polymerized polystyrene-bpoly( 2-vinyl pyridine) (PS-b-P2VP) block copolymer and hydrophilically preformed TiO 2 nanocrystals. The polymer concentration and polymer:TiO2 ratio were carefully adjusted to systematically vary the TiO2 structure and evaluate the effects on the performances of solid-state dye-sensitized solar cells (ssDSSCs). As evaluated by scanning electron microscopy (SEM), grazing incidence small-angle X-ray scattering (GISAXS), and N2 adsorption-desorption measurements, the use of a higher polymer concentration (6 wt{\%}) and a polymer:TiO2 ratio of 1:2, referred to as P6T2, resulted in a worm-like structure with a large surface area and smaller mesopores, whereas an aggregated structure with bimodal pores was obtained with a polymer:TiO2 ratio of 1:1. An efficiency of 4.0{\%} was obtained at 100 mW/cm2 when using a 2.8 μm thick P6T2 film as a photoanode in a ssDSSC, which is much greater than the efficiency of commercially available paste (2.3{\%}) with a similar film thickness. The higher efficiency of the P6T2 cells is due to the improved current density, resulting from its larger surface area, well-organized pores, and good interconnectivity.",
author = "Kim, {Sang Jin} and Kim, {Dong Jun} and Heo, {Sung Yeon} and Hyungju Ahn and Ryu, {Du Yeol} and Kim, {Jong Hak}",
year = "2013",
month = "1",
day = "1",
doi = "10.1016/j.electacta.2013.04.135",
language = "English",
volume = "105",
pages = "15--22",
journal = "Electrochimica Acta",
issn = "0013-4686",
publisher = "Elsevier Limited",

}

Micron-thick, worm-like, organized TiO2 films prepared using polystyrene-b-poly(2-vinyl pyridine) block copolymer and preformed TiO 2 for solid-state dye-sensitized solar cells. / Kim, Sang Jin; Kim, Dong Jun; Heo, Sung Yeon; Ahn, Hyungju; Ryu, Du Yeol; Kim, Jong Hak.

In: Electrochimica Acta, Vol. 105, 01.01.2013, p. 15-22.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Micron-thick, worm-like, organized TiO2 films prepared using polystyrene-b-poly(2-vinyl pyridine) block copolymer and preformed TiO 2 for solid-state dye-sensitized solar cells

AU - Kim, Sang Jin

AU - Kim, Dong Jun

AU - Heo, Sung Yeon

AU - Ahn, Hyungju

AU - Ryu, Du Yeol

AU - Kim, Jong Hak

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Crack-free, micron-thick, worm-like mesoporous TiO2 films with an anatase phase, organized pores, and good interconnectivity were prepared by the self-assembly of anionically polymerized polystyrene-bpoly( 2-vinyl pyridine) (PS-b-P2VP) block copolymer and hydrophilically preformed TiO 2 nanocrystals. The polymer concentration and polymer:TiO2 ratio were carefully adjusted to systematically vary the TiO2 structure and evaluate the effects on the performances of solid-state dye-sensitized solar cells (ssDSSCs). As evaluated by scanning electron microscopy (SEM), grazing incidence small-angle X-ray scattering (GISAXS), and N2 adsorption-desorption measurements, the use of a higher polymer concentration (6 wt%) and a polymer:TiO2 ratio of 1:2, referred to as P6T2, resulted in a worm-like structure with a large surface area and smaller mesopores, whereas an aggregated structure with bimodal pores was obtained with a polymer:TiO2 ratio of 1:1. An efficiency of 4.0% was obtained at 100 mW/cm2 when using a 2.8 μm thick P6T2 film as a photoanode in a ssDSSC, which is much greater than the efficiency of commercially available paste (2.3%) with a similar film thickness. The higher efficiency of the P6T2 cells is due to the improved current density, resulting from its larger surface area, well-organized pores, and good interconnectivity.

AB - Crack-free, micron-thick, worm-like mesoporous TiO2 films with an anatase phase, organized pores, and good interconnectivity were prepared by the self-assembly of anionically polymerized polystyrene-bpoly( 2-vinyl pyridine) (PS-b-P2VP) block copolymer and hydrophilically preformed TiO 2 nanocrystals. The polymer concentration and polymer:TiO2 ratio were carefully adjusted to systematically vary the TiO2 structure and evaluate the effects on the performances of solid-state dye-sensitized solar cells (ssDSSCs). As evaluated by scanning electron microscopy (SEM), grazing incidence small-angle X-ray scattering (GISAXS), and N2 adsorption-desorption measurements, the use of a higher polymer concentration (6 wt%) and a polymer:TiO2 ratio of 1:2, referred to as P6T2, resulted in a worm-like structure with a large surface area and smaller mesopores, whereas an aggregated structure with bimodal pores was obtained with a polymer:TiO2 ratio of 1:1. An efficiency of 4.0% was obtained at 100 mW/cm2 when using a 2.8 μm thick P6T2 film as a photoanode in a ssDSSC, which is much greater than the efficiency of commercially available paste (2.3%) with a similar film thickness. The higher efficiency of the P6T2 cells is due to the improved current density, resulting from its larger surface area, well-organized pores, and good interconnectivity.

UR - http://www.scopus.com/inward/record.url?scp=84878286526&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878286526&partnerID=8YFLogxK

U2 - 10.1016/j.electacta.2013.04.135

DO - 10.1016/j.electacta.2013.04.135

M3 - Article

AN - SCOPUS:84878286526

VL - 105

SP - 15

EP - 22

JO - Electrochimica Acta

JF - Electrochimica Acta

SN - 0013-4686

ER -