Abstract
The microwave dielectric properties of the multiwalled carbon nanotubes (MWCNT) thick film, Ca1 − xBaxBi2Nb2O9 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) (CBBNO) thick films, and MWCNT/CBBNO layered thick film composites in the 8–18 GHz were determined by the overlay method using the microstrip ring resonator (MSRR). Microwave properties were studied by perturbation of MSRR due to the overlay of thick films of different materials. The MWCNT thick film, CBBNO thick film, and MWCNT/CBBNO layered composite thick films were screen-printed on an alumina substrate. The experimental data was obtained for the material and/or composition dependent peak output and the resonance frequency of the MSRR. In addition, the numerical results were obtained for first harmonic radiated in the X-band region from the MSRR operating in Ku-band (15.45 GHz) frequency region. The comparison was done for the X and Ku-band responses of MSRR due to perturbation of screen-printed MWCNT thick film, CBBNO thick film, and MWCNT/CBBNO layered thick film composites.
Original language | English |
---|---|
Pages (from-to) | 64-72 |
Number of pages | 9 |
Journal | Journal of Electroceramics |
Volume | 43 |
Issue number | 1-4 |
DOIs | |
Publication status | Published - 2019 Dec 1 |
Bibliographical note
Funding Information:One of the authors Dr. Vijaya Puri gratefully acknowledges UGC, New Delhi, India for the award of Research Scientist ?C?. The author Hyung-Ho Park acknowledges Nano-Convergence Foundation (www.nanotech2020.org ) funded by the Ministry of Science and ICT (MSIT, Korea) & the Ministry of Trade, Industry and Energy (MOTIE, Korea) [Project Name: Commercialization development of super thermal insulation aerogel composite foam for cold insulation material].
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering
- Materials Chemistry