Abstract
Fine-grained classification involves distinguishing between similar sub-categories based on subtle differences in highly localized regions, therefore, accurate localization of discriminative regions remains a major challenge. We describe a patch-based framework to address this problem. We introduce triplets of patches with geometric constraints to improve the accuracy of patch localization, and automatically mine discriminative geometrically-constrained triplets for classification. The resulting approach only requires object bounding boxes. Its effectiveness is demonstrated using four publicly available fine-grained datasets, on which it outperforms or achieves comparable performance to the state-of-the-art in classification.
Original language | English |
---|---|
Title of host publication | Proceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 |
Publisher | IEEE Computer Society |
Pages | 1163-1172 |
Number of pages | 10 |
ISBN (Electronic) | 9781467388504 |
DOIs | |
Publication status | Published - 2016 Dec 9 |
Event | 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States Duration: 2016 Jun 26 → 2016 Jul 1 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2016-December |
ISSN (Print) | 1063-6919 |
Conference
Conference | 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 |
---|---|
Country/Territory | United States |
City | Las Vegas |
Period | 16/6/26 → 16/7/1 |
Bibliographical note
Funding Information:This work was partially supported by ONR MURI Grant N000141010934.
Publisher Copyright:
© 2016 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition