Mission orbit design of CubeSat impactor measuring lunar local magnetic field

Jeong Ah Lee, Sang Young Park, Youngkwang Kim, Jonghee Bae, Donghun Lee, Gwanghyeok Ju

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The current study designs the mission orbit of the lunar CubeSat spacecraft to measure the lunar local magnetic anomaly. To perform this mission, the CubeSat will impact the lunar surface over the Reiner Gamma swirl on the Moon. Orbit analyses are conducted comprising ΔV and error propagation analysis for the CubeSat mission orbit. First, three possible orbit scenarios are presented in terms of the CubeSat's impacting trajectories. For each scenario, it is important to achieve mission objectives with a minimum ΔV since the CubeSat is limited in size and cost. Therefore, the ΔV needed for the CubeSat to maneuver from the initial orbit toward the impacting trajectory is analyzed for each orbit scenario. In addition, error propagation analysis is performed for each scenario to evaluate how initial errors, such as position error, velocity error, and maneuver error, that occur when the CubeSat is separated from the lunar orbiter, eventually affect the final impact position. As a result, the current study adopts a CubeSat release from the circular orbit at 100 km altitude and an impact slope of 15°, among the possible impacting scenarios. For this scenario, the required ΔV is calculated as the result of the ΔV analysis. It can be used to practically make an estimate of this specific mission's fuel budget. In addition, the current study suggests error constraints for ΔV for the mission.

Original languageEnglish
Pages (from-to)127-138
Number of pages12
JournalJournal of Astronomy and Space Sciences
Volume34
Issue number2
DOIs
Publication statusPublished - 2017 Jun 1

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'Mission orbit design of CubeSat impactor measuring lunar local magnetic field'. Together they form a unique fingerprint.

Cite this