Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Electrochemical discharge machining (ECDM) is an effective spark-based machining method for nonconductive materials such as glass. The spark generation in ECDM processes is closely related to the electrode effects phenomenon, which has been explained as an immediate breakdown of electrolysis due to the gas film formation at the electrode surface. The initiation of the electrode effects is mainly influenced by the critical current density, which is dependent on several parameters such as the wettability of the gas bubble, surface conditions of the electrode and hydrodynamic characteristics of the bubbles. In ECDM processes, precise control of the spark generation is difficult due to the random formation of the dielectric gas film. In this study, a partially side-insulated electrode that maintained a constant contact surface area with the electrolyte was used for the ECDM process to ensure that a uniform gas film was formed. Visual inspections indicated that the side-insulated tool provides new possibilities for describing the exact geometry of a gas film by inducing single bubble formations. Experiment results demonstrated that ECDM with a side-insulated electrode immersed in the electrolyte generated more stable spark discharges compared to non-insulated electrodes. Microchannels were fabricated to investigate the effects of the side insulation on the geometric accuracy and the surface integrity of the machined part.

Original languageEnglish
Article number045019
JournalJournal of Micromechanics and Microengineering
Volume18
Issue number4
DOIs
Publication statusPublished - 2008 Apr 1

Fingerprint

Electric discharge machining
Gases
Electrodes
Electric sparks
Electrolytes
Bubble formation
Microchannels
Electrolysis
Process control
Wetting
Insulation
Machining
Hydrodynamics
Inspection
Glass
Geometry

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Cite this

@article{0abec35fdffd4c2187a3fa7ba2d6ebea,
title = "Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode",
abstract = "Electrochemical discharge machining (ECDM) is an effective spark-based machining method for nonconductive materials such as glass. The spark generation in ECDM processes is closely related to the electrode effects phenomenon, which has been explained as an immediate breakdown of electrolysis due to the gas film formation at the electrode surface. The initiation of the electrode effects is mainly influenced by the critical current density, which is dependent on several parameters such as the wettability of the gas bubble, surface conditions of the electrode and hydrodynamic characteristics of the bubbles. In ECDM processes, precise control of the spark generation is difficult due to the random formation of the dielectric gas film. In this study, a partially side-insulated electrode that maintained a constant contact surface area with the electrolyte was used for the ECDM process to ensure that a uniform gas film was formed. Visual inspections indicated that the side-insulated tool provides new possibilities for describing the exact geometry of a gas film by inducing single bubble formations. Experiment results demonstrated that ECDM with a side-insulated electrode immersed in the electrolyte generated more stable spark discharges compared to non-insulated electrodes. Microchannels were fabricated to investigate the effects of the side insulation on the geometric accuracy and the surface integrity of the machined part.",
author = "Han, {Min Seop} and Byung-Kwon Min and Lee, {Sang Jo}",
year = "2008",
month = "4",
day = "1",
doi = "10.1088/0960-1317/18/4/045019",
language = "English",
volume = "18",
journal = "Journal of Micromechanics and Microengineering",
issn = "0960-1317",
publisher = "IOP Publishing Ltd.",
number = "4",

}

TY - JOUR

T1 - Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode

AU - Han, Min Seop

AU - Min, Byung-Kwon

AU - Lee, Sang Jo

PY - 2008/4/1

Y1 - 2008/4/1

N2 - Electrochemical discharge machining (ECDM) is an effective spark-based machining method for nonconductive materials such as glass. The spark generation in ECDM processes is closely related to the electrode effects phenomenon, which has been explained as an immediate breakdown of electrolysis due to the gas film formation at the electrode surface. The initiation of the electrode effects is mainly influenced by the critical current density, which is dependent on several parameters such as the wettability of the gas bubble, surface conditions of the electrode and hydrodynamic characteristics of the bubbles. In ECDM processes, precise control of the spark generation is difficult due to the random formation of the dielectric gas film. In this study, a partially side-insulated electrode that maintained a constant contact surface area with the electrolyte was used for the ECDM process to ensure that a uniform gas film was formed. Visual inspections indicated that the side-insulated tool provides new possibilities for describing the exact geometry of a gas film by inducing single bubble formations. Experiment results demonstrated that ECDM with a side-insulated electrode immersed in the electrolyte generated more stable spark discharges compared to non-insulated electrodes. Microchannels were fabricated to investigate the effects of the side insulation on the geometric accuracy and the surface integrity of the machined part.

AB - Electrochemical discharge machining (ECDM) is an effective spark-based machining method for nonconductive materials such as glass. The spark generation in ECDM processes is closely related to the electrode effects phenomenon, which has been explained as an immediate breakdown of electrolysis due to the gas film formation at the electrode surface. The initiation of the electrode effects is mainly influenced by the critical current density, which is dependent on several parameters such as the wettability of the gas bubble, surface conditions of the electrode and hydrodynamic characteristics of the bubbles. In ECDM processes, precise control of the spark generation is difficult due to the random formation of the dielectric gas film. In this study, a partially side-insulated electrode that maintained a constant contact surface area with the electrolyte was used for the ECDM process to ensure that a uniform gas film was formed. Visual inspections indicated that the side-insulated tool provides new possibilities for describing the exact geometry of a gas film by inducing single bubble formations. Experiment results demonstrated that ECDM with a side-insulated electrode immersed in the electrolyte generated more stable spark discharges compared to non-insulated electrodes. Microchannels were fabricated to investigate the effects of the side insulation on the geometric accuracy and the surface integrity of the machined part.

UR - http://www.scopus.com/inward/record.url?scp=42549118504&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=42549118504&partnerID=8YFLogxK

U2 - 10.1088/0960-1317/18/4/045019

DO - 10.1088/0960-1317/18/4/045019

M3 - Article

VL - 18

JO - Journal of Micromechanics and Microengineering

JF - Journal of Micromechanics and Microengineering

SN - 0960-1317

IS - 4

M1 - 045019

ER -