Abstract
There is huge interest in biosensors as a result of the demand for personalized medicine. In biomolecular detection, transition-metal dichalcogenides (TMDs) can be used as signal-enhancing elements. Herein, we utilize a solution-based electrochemical exfoliation technique with bipolar electrodes to manufacture MoSe2 nanolabels for biomolecular detection. Prepared MoSe2 nanoparticles (NPs) exhibit electrocatalytic activity toward the hydrogen evolution reaction (HER), and such a property allows it to act as a robust label for magneto-immunoassays toward protein detection. The magneto-immunoassay also displayed good selectivity, a wide linear range of 2 to 500 ng mL-1, high sensitivity (LOD = 1.23 ng mL-1) and reproducibility (RSD = 9.7%). These findings establish the viability and reproducibility of such an exfoliation technique for TMD nanolabels for the development of low costs and efficient biosensing systems. (Graph Presented).
Original language | English |
---|---|
Pages (from-to) | 12204-12209 |
Number of pages | 6 |
Journal | Analytical Chemistry |
Volume | 88 |
Issue number | 24 |
DOIs | |
Publication status | Published - 2016 Dec 20 |
Bibliographical note
Funding Information:M.P. acknowledges a Tier 2 grant (MOE2013-T2-1-056; ARC 35/13) from the Ministry of Education, Singapore. R.J.T. acknowledges financial support from the National Research Foundation (NRF), Prime Minister's Office, Singapore, under the CREATE programme, Singapore-MIT Alliance for Research and Technology (SMART) BioSystems and Micromechanics (BioSyM) IRG. Z.S. was supported by the Czech Science Foundation (GACR No. 16-05167S).
Publisher Copyright:
© 2016 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry