Abstract
Over the past few years, image-to-image (I2I) translation methods have been proposed to translate a given image into diverse outputs. Despite the impressive results, they mainly focus on the I2I translation between two domains, so the multi-domain I2I translation still remains a challenge. To address this problem, we propose a novel multi-domain unsupervised image-to-image translation (MDUIT) framework that leverages the decomposed content feature and appearance adaptive convolution to translate an image into a target appearance while preserving the given geometric content. We also exploit a contrast learning objective, which improves the disentanglement ability and effectively utilizes multi-domain image data in the training process by pairing the semantically similar images. This allows our method to learn the diverse mappings between multiple visual domains with only a single framework. We show that the proposed method produces visually diverse and plausible results in multiple domains compared to the state-of-the-art methods.
Original language | English |
---|---|
Title of host publication | 2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1750-1754 |
Number of pages | 5 |
ISBN (Electronic) | 9781665405409 |
DOIs | |
Publication status | Published - 2022 |
Event | 47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore Duration: 2022 May 23 → 2022 May 27 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2022-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 |
---|---|
Country/Territory | Singapore |
City | Virtual, Online |
Period | 22/5/23 → 22/5/27 |
Bibliographical note
Funding Information:This research was supported by R&D program for Advanced Integrated-intelligence for Identification (AIID) through the National Research Foundation of KOREA(NRF) funded by Ministry of Science and ICT (NRF-
Funding Information:
This research was supported by R&D program for Advanced Integrated-intelligence for Identification (AIID) through the National Research Foundation of KOREA(NRF) funded by Ministry of Science and ICT (NRF-2018M3E3A1057289).
Publisher Copyright:
© 2022 IEEE
All Science Journal Classification (ASJC) codes
- Software
- Signal Processing
- Electrical and Electronic Engineering