Abstract
We present a multi-instance object segmentation algorithm to tackle occlusions. As an object is split into two parts by an occluder, it is nearly impossible to group the two separate regions into an instance by purely bottomup schemes. To address this problem, we propose to incorporate top-down category specific reasoning and shape prediction through exemplars into an intuitive energy minimization framework. We perform extensive evaluations of our method on the challenging PASCAL VOC 2012 segmentation set. The proposed algorithm achieves favorable results on the joint detection and segmentation task against the state-of-the-art method both quantitatively and qualitatively.
Original language | English |
---|---|
Title of host publication | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
Publisher | IEEE Computer Society |
Pages | 3470-3478 |
Number of pages | 9 |
ISBN (Electronic) | 9781467369640 |
DOIs | |
Publication status | Published - 2015 Oct 14 |
Event | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States Duration: 2015 Jun 7 → 2015 Jun 12 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 07-12-June-2015 |
ISSN (Print) | 1063-6919 |
Other
Other | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
---|---|
Country/Territory | United States |
City | Boston |
Period | 15/6/7 → 15/6/12 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition