Multibit MoS2Photoelectronic Memory with Ultrahigh Sensitivity

Dain Lee, Euyheon Hwang, Youngbin Lee, Yongsuk Choi, Jong Su Kim, Seungwoo Lee, Jeong Ho Cho

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

The operation of a generic single-layer MoS2 photoelectronic memory device that fully utilized the exotic electrical and optical properties of single-layer MoS2. A single-layer MoS2 flake with a direct band gap of 1.8 eV acted as both a channel material and a light-absorption layer, and AuNPs were employed as the charge-trapping layers to achieve high-performance memory operation. Photoillumination excited the electrons in the MoS2 layer valence band into the conduction band. Before the photoinduced excitons had recombined, the application of a negative gate voltage induced charge transfer from the AuNPs to the MoS2 valance band. The transferred electrons prohibited recombination among the photoexcited electrons, which enabled the persistent storage of photonic signals. The transferred electrons prohibited recombination among the photoexcited electrons, which enabled the persistent storage of photonic signals. The multilevel data storage could be deterministically reconfigured by both the applied gate voltage and the illumination power. The resulting MoS2 photoelectronic memories exhibited excellent memory characteristics, including a large programming/erasing current ratio, multilevel data storage, cyclic endurance, and stable retention.

Original languageEnglish
Pages (from-to)9196-9202
Number of pages7
JournalAdvanced Materials
Volume28
Issue number41
DOIs
Publication statusPublished - 2016 Jan 1

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Multibit MoS<sub>2</sub>Photoelectronic Memory with Ultrahigh Sensitivity'. Together they form a unique fingerprint.

  • Cite this

    Lee, D., Hwang, E., Lee, Y., Choi, Y., Kim, J. S., Lee, S., & Cho, J. H. (2016). Multibit MoS2Photoelectronic Memory with Ultrahigh Sensitivity. Advanced Materials, 28(41), 9196-9202. https://doi.org/10.1002/adma.201603571