Multifunctional nanoarchitectures from DNA-based ABC monomers

Jong B. Lee, Young H. Roh, Soong Ho Um, Hisakage Funabashi, Wenlong Cheng, Judy J. Cha, Pichamon Kiatwuthinon, David A. Muller, Dan Luo

Research output: Contribution to journalArticle

112 Citations (Scopus)

Abstract

The ability to attach different functional moieties to a molecular building block could lead to applications in nanoelectronics, nanophotonics, intelligent sensing and drug delivery. The building unit needs to be both multivalent and anisotropic, and although many anisotropic building blocks have been created, these have not been universally applicable. Recently, DNA has been used to generate various nanostructures or hybrid systems, and as a generic building block for various applications. Here, we report the creation of anisotropic, branched and crosslinkable building blocks (ABC monomers) from which multifunctional nanoarchitectures have been assembled. In particular, we demonstrate a target-driven polymerization process in which polymers are generated only in the presence of a specific DNA molecule, leading to highly sensitive pathogen detection. Using this monomer system, we have also designed a biocompatible nanovector that delivers both drugs and tracers simultaneously. Our approach provides a general yet versatile route towards the creation of a range of multifunctional nanoarchitectures.

Original languageEnglish
Pages (from-to)430-436
Number of pages7
JournalNature Nanotechnology
Volume4
Issue number7
DOIs
Publication statusPublished - 2009 Jul

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • Materials Science(all)
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Cite this

Lee, J. B., Roh, Y. H., Um, S. H., Funabashi, H., Cheng, W., Cha, J. J., Kiatwuthinon, P., Muller, D. A., & Luo, D. (2009). Multifunctional nanoarchitectures from DNA-based ABC monomers. Nature Nanotechnology, 4(7), 430-436. https://doi.org/10.1038/nnano.2009.93