Mycobacterium tuberculosis Rv3628 drives th1-type T cell immunity via TLR2-mediated activation of dendritic cells and displays vaccine potential against the hyper-virulent beijing K strain

Woo Sik Kim, Jong Seok Kim, Seung Bin Cha, Hongmin Kim, Kee Woong Kwon, So Jeong Kim, Seung Jung Han, Soo Young Choi, Sang Nae Cho, Jong Hwan Park, Sung Jae Shin

Research output: Contribution to journalArticle

15 Citations (Scopus)


Identification of vaccine target antigens (Ags) that induce Ag-specific Th1 immunity is the first step toward the development of a tuberculosis vaccine. Here, we evaluated the Mycobacterium tuberculosis (Mtb) protein Rv3628, a soluble inorganic pyrophosphatase, as a vaccine target and characterized the molecular details of its interaction with dendritic cells (DCs). Rv3628 activated DCs, increasing their expression of cell surface molecules and augmenting their production of TNF-α, IL-1β, IL-6, and IL-12p70. Rv3628 mediated these effects by binding to TLR2 and activating downstream MyD88-, MAPK- and NF-κB-dependent signaling pathways. Rv3628-stimulated DCs induced the expansion of OVA-specific CD4+ and CD8+ T cells, which secreted IFN-γ and IL-2. Rv3628-specific effector/memory T cells expanded to a similar extent as those stimulated with ESAT-6 Ag in samples of lung and spleen cells collected from Mtb-infected mice. Finally, an Rv3628 subunit vaccine adjuvanted with dimethyldioctadecylammonium liposomes containing monophosphoryl lipid-A caused significant reductions in bacterial counts and lung inflammation after challenge with the hyper-virulent Mtb K strain. Importantly, protective efficacy was correlated with the generation of Rv3628-specific CD4+ T cells co-producing IFN-γ, TNF-α and IL-2 and exhibiting an elevated IFN-γ recall response. Thus, Rv3628 polarizes DCs toward a Th1 phenotype and promotes protective immunity against Mtb infection.

Original languageEnglish
Pages (from-to)24962-24982
Number of pages21
Issue number18
Publication statusPublished - 2016 May 1


All Science Journal Classification (ASJC) codes

  • Oncology

Cite this