NaAlCl4: New Halide Solid Electrolyte for 3 V Stable Cost-Effective All-Solid-State Na-Ion Batteries

Juhyoun Park, Jun Pyo Son, Wonseok Ko, Jae Seung Kim, Yeji Choi, Hyungsub Kim, Hiram Kwak, Dong Hwa Seo, Jongsoon Kim, Yoon Seok Jung

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Although high-voltage-stable halide solid electrolytes (SEs) have emerged, only a few Na+ halide SEs have been developed thus far. Moreover, the use of expensive elements reduces the suitability of all-solid-state Na-ion batteries (ASNBs). Herein, the new mechanochemically prepared orthorhombic NaAlCl4 is demonstrated to exhibit a 10-fold enhancement in Na+ conductivity (3.9 × 10-6 S cm-1 at 30 °C) compared to annealed samples. The feasibility of NaAlCl4 for ASNBs is also validated for the first time. X-ray Rietveld refinement with bond valence energy landscape calculations reveals 1D-preferable 2D Na+ conduction pathways. High-voltage stability up to ∼4.0 V (vs Na/Na+) is confirmed by electrochemical measurements and theoretical calculations. Furthermore, the outstanding electrochemical performance of NaCrO2/Na3Sn ASNBs at 30 and 60 °C is demonstrated (e.g., 82.9% capacity retention at the 500th cycle at 60 °C and 1C), shedding light on the potential of the cost-effective and safe energy storage systems.

Original languageEnglish
Pages (from-to)3293-3301
Number of pages9
JournalACS Energy Letters
Volume7
Issue number10
DOIs
Publication statusPublished - 2022 Oct 14

Bibliographical note

Funding Information:
This work was supported by the program of phased development of carbon neutral technologies through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (NRF-2022M3J1A1085397). The computational work was supported by the Supercomputing Center/Korea Institute of Science and Technology Information with supercomputing resources, including technical support (KSC-2021-CRE-0337 to D.-H.S.).

Publisher Copyright:
© 2022 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Chemistry (miscellaneous)
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'NaAlCl4: New Halide Solid Electrolyte for 3 V Stable Cost-Effective All-Solid-State Na-Ion Batteries'. Together they form a unique fingerprint.

Cite this