Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials

Jung Hwan Kim, Donggue Lee, Yong Hyeok Lee, Wenshuai Chen, Sang Young Lee

Research output: Contribution to journalReview article

37 Citations (Scopus)

Abstract

The ongoing surge in demand for high-performance energy storage systems inspires the relentless pursuit of advanced materials and structures. Components of energy storage systems are generally based on inorganic/metal compounds, carbonaceous substances, and petroleum-derived hydrocarbon chemicals. These traditional materials, however, may have difficulties fulfilling the ever-increasing requirements of energy storage systems. Recently, nanocellulose has garnered considerable attention as an exceptional 1D element due to its natural abundance, environmental friendliness, recyclability, structural uniqueness, facile modification, and dimensional stability. Recent advances and future outlooks of nanocellulose as a green material for energy storage systems are described, with a focus on its application in supercapacitors, lithium-ion batteries (LIBs), and post-LIBs. Nanocellulose is typically classified as cellulose nanofibril (CNF), cellulose nanocrystal (CNC), and bacterial cellulose (BC). The unusual 1D structure and chemical functionalities of nanocellulose bring unprecedented benefits to the fabrication and performance of energy storage materials and systems, which lie far beyond those achievable with conventional synthetic materials. It is believed that this progress report can stimulate research interests in nanocellulose as a promising material, eventually widening material horizons for the development of next-generation energy storage systems, that will lead us closer to so-called Battery-of-Things (BoT) era.

Original languageEnglish
Article number1804826
JournalAdvanced Materials
Volume31
Issue number20
DOIs
Publication statusPublished - 2019 May 17

Bibliographical note

Funding Information:
J.-H.K. and D.L. contributed equally to this work. This work was supported by the Basic Science Research Program (2017M1A2A2087810, 2018R1A2A1A05019733) and Wearable Platform Materials Technology Center (2016R1A5A1009926) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning. This work was also supported by the Industry Technology Development Program (10080540) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and also supported by the National Institute of Forest Science (FP 0400-2016-01).

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials'. Together they form a unique fingerprint.

Cite this