Nanoscale patterning of complex magnetic nanostructures by reduction with low-energy protons

Sanghoon Kim, Soogil Lee, Jungho Ko, Jangyup Son, Minseok Kim, Shinill Kang, Jongill Hong

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)


Techniques that can produce patterns with nanoscale details on surfaces have a central role in the development of new electronic, optical and magnetic devices and systems. High-energy ion irradiation can produce nanoscale patterns on ferromagnetic films by destroying the structure of layers or interfaces, but this approach can damage the film and introduce unwanted defects. Moreover, ferromagnetic nanostructures that have been patterned by ion irradiation often interfere with unpatterned regions through exchange interactions, which results in a loss of control over magnetization switching. Here, we demonstrate that low-energy proton irradiation can pattern an array of 100-nm-wide single ferromagnetic domains by reducing [Co 3 O 4 /Pd] 10 (a paramagnetic oxide) to produce [Co/Pd] 10 (a ferromagnetic metal). Moreover, there are no exchange interactions in the final superlattice, and the ions have a minimal impact on the overall structure, so the interfaces between alternate layers of cobalt (which are 0.6/nm thick) and palladium (1.0/nm) remain intact. This allows the reduced [Co/Pd] 10 superlattice to produce a perpendicular magnetic anisotropy that is stronger than that observed in the metallic [Co/Pd] 10 superlattices we prepared for reference. We also demonstrate that our non-destructive approach can reduce CoFe 2 O 4 to metallic CoFe.

Original languageEnglish
Pages (from-to)567-571
Number of pages5
JournalNature Nanotechnology
Issue number9
Publication statusPublished - 2012 Sept

Bibliographical note

Funding Information:
The authors thank E. Sullivan, Y. Jo, D.R. Lee, H-J. Shin, H.H. Lee, K-H. Yoo, M-H. Cho, D-H. Ko, I. Sohn, T. Emery, S-J. Park and M. Ahn for help with measurements and discussions. The authors also thank H. Youn and C-Y. Chung (Park System Corporation) for their support in observing magnetic images using MFM, and T.W. Lee (RIAM) for his support with XRD and XRR measurements. This research was supported in part by the Basic Science Research Program (2011-0003263), the Pioneer Research Center Program (2011-000-2116) and the Center for Nanoscale Mechatronics and Manufacturing (which is one of the 21st Century Frontier Research Programs (2011K000243) funded by the Korean Ministry of Education, Science and Technology).

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • Materials Science(all)
  • Condensed Matter Physics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Nanoscale patterning of complex magnetic nanostructures by reduction with low-energy protons'. Together they form a unique fingerprint.

Cite this