New Subgrouping of Multiple Stellar Populations in NGC 2808 Based on Low-resolution Spectroscopy

Seungsoo Hong, Dongwook Lim, Chul Chung, Jaeyeon Kim, Sang Il Han, Young Wook Lee

Research output: Contribution to journalArticlepeer-review

Abstract

We performed low-resolution spectroscopy for the red giant branch stars in an intriguing globular cluster (GC) NGC 2808, which hosts subpopulations with extreme helium and light-element abundances. In order to trace N, C, and Ca abundance differences among subpopulations, we measured CN, CH, and Ca ii H&K spectral indices, respectively. We identified four subpopulations (G1, G2, G3, and G4) from CN and CH strength, with CN-weak/CH-strong G1, CN-intermediate/CH-strong G2, CN-strong/CH-intermediate G3, and CN-strong/CH-weak G4. Compared to [Na/O] from high-resolution spectroscopy, we show that CN index can more clearly separate G1 and G2. Since CN traces N abundance in a GC, it implies that G1 and G2 would show a larger difference in [N/Fe] compared to [Na/Fe], as predicted by chemical evolution models. Later generation stars G3 and G4, however, are better separated with high-resolution spectroscopy. We also found that G4 shows a stronger Ca ii H&K line strength compared to that of G1, but we suspect this to be a result of unusually strong He enhancement and/or Mg depletion in G4 of this GC. This work illustrates that combining low- and high-resolution spectroscopic studies can improve the separation of subpopulations in GCs.

Original languageEnglish
Article number130
JournalAstronomical Journal
Volume162
Issue number4
DOIs
Publication statusPublished - 2021 Oct

Bibliographical note

Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'New Subgrouping of Multiple Stellar Populations in NGC 2808 Based on Low-resolution Spectroscopy'. Together they form a unique fingerprint.

Cite this