Abstract
Metal-organic frameworks (MOFs) serve as expedient self-templated precursors to derive hybrid materials with various functionalities. This study develops a bimetallic MOF-derived approach for the facile synthesis of nitrogen-doped carbon integrated nickel-cobalt mixed metal phosphide (NiCoP/NC) using a controlled experimental procedure for supercapacitors. Here, the nitrogen-doped carbon nanosheet functions as a conductive framework and protective layer for NiCoP nanostructures and offers facile pathways for easy charge transfer, abundant surface active sites and improves the stability of the electrode. The marigold flower-like morphology of NiCoP nanostructures stores a large number of ions in their petals and shortens the ion diffusion length. The electrochemical analysis demonstrates that the as-designed NiCoP/NC electrode possesses a high specific capacity of 690.6 mA h g-1 (6.22 F cm-2) at 1 A g-1, high rate capability and excellent cycling stability. Additionally, a hybrid supercapacitor built with NiCoP/NC and activated carbon as positive and negative electrodes shows a maximum specific energy of 47 W h kg-1 at a specific power of 1666 W kg-1 and good capacity retention over 10 000 charge-discharge cycles. The present multicomponent approach combines the virtues of efficient redox chemistries of each element and N-doped carbon providing abundant surface active sites while stabilizing the active electrode material during repeated cycling.
Original language | English |
---|---|
Pages (from-to) | 6360-6370 |
Number of pages | 11 |
Journal | CrystEngComm |
Volume | 22 |
Issue number | 38 |
DOIs | |
Publication status | Published - 2020 Oct 14 |
Bibliographical note
Funding Information:This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MIST) (No. NRF-2019R1A2C2090443) and Korea Electric Power Corporation (Grant number: R19XO01-23).
Publisher Copyright:
© 2020 The Royal Society of Chemistry.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics