TY - JOUR
T1 - NMR Chemical shifts of metal centres in polyoxometalates
T2 - Relativistic DFT predictions
AU - Vankova, Nina
AU - Heine, Thomas
AU - Kortz, Ulrich
PY - 2009
Y1 - 2009
N2 - A DFT approach incorporating relativistic corrections and solvent effects was tested for NMR calculations on transitionmetal centres in polyoxometalates. For a monoplatinum decavanadate derivative and a set of dilacunary polyoxotungstates 51V and 183W chemical shifts were calculated at several levels of theoretical treatment regarding solvent, counterion and exchange-correlation functional. Calculations were performed first in the gas phase to model isolated ions and next in a continuum, model for water to evaluate the importance of solvation for the quality of the computed chemical shifts. We show that the use of the orbital-dependent Kohn-Sham exchange-correlation functional SAOP in ZORA spin-orbit calculations with solvent effects included via COSMO substantially improves the agreement between computed results and experimental benchmarks for 51V chemical shifts (at least, in the case of [H2PtIVV9O 28]5-). In the case of dilacunary polyoxotungstates our calculations confirm, the necessity of modelling an ion pair in which a counterion is specifically included in the POM lacuna to attain accurate predictions of the corresponding 183W NMR spectra. We show that if the counterion is relatively small (like Li+ and Na+), the explicit: location of a water molecule in its vicinity (in addition to the overall. COSMO treatment) improves further the accuracy of the correlation between computed and experimental shifts (to less than 5 ppm of the encompassed δ range).
AB - A DFT approach incorporating relativistic corrections and solvent effects was tested for NMR calculations on transitionmetal centres in polyoxometalates. For a monoplatinum decavanadate derivative and a set of dilacunary polyoxotungstates 51V and 183W chemical shifts were calculated at several levels of theoretical treatment regarding solvent, counterion and exchange-correlation functional. Calculations were performed first in the gas phase to model isolated ions and next in a continuum, model for water to evaluate the importance of solvation for the quality of the computed chemical shifts. We show that the use of the orbital-dependent Kohn-Sham exchange-correlation functional SAOP in ZORA spin-orbit calculations with solvent effects included via COSMO substantially improves the agreement between computed results and experimental benchmarks for 51V chemical shifts (at least, in the case of [H2PtIVV9O 28]5-). In the case of dilacunary polyoxotungstates our calculations confirm, the necessity of modelling an ion pair in which a counterion is specifically included in the POM lacuna to attain accurate predictions of the corresponding 183W NMR spectra. We show that if the counterion is relatively small (like Li+ and Na+), the explicit: location of a water molecule in its vicinity (in addition to the overall. COSMO treatment) improves further the accuracy of the correlation between computed and experimental shifts (to less than 5 ppm of the encompassed δ range).
UR - http://www.scopus.com/inward/record.url?scp=72949123958&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=72949123958&partnerID=8YFLogxK
U2 - 10.1002/ejic.200900865
DO - 10.1002/ejic.200900865
M3 - Article
AN - SCOPUS:72949123958
SN - 0009-2940
SP - 5102
EP - 5108
JO - Chemische Berichte
JF - Chemische Berichte
IS - 34
ER -