Numerical analysis of blazed wire-grid polarizer for plasmonic enhancement

Changhun Lee, Eunji Sim, Donghyun Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We analyze the characteristics of plasmonics-based enhancement of a wire-grid polarizer (WGP) by rigorous coupledwave analysis (RCWA). We consider blazed WGP (bWGP) for improvement of polarimetric performance based on plasmonic momentum-matching in the metal/dielectric interface. The analysis used a model of triangular wire-grids approximated with five graded layers of identical thickness. We have compared the performance to that of a conventional WGP (cWGP) with a corresponding lamellar grating shape profile. As a performance measure, we calculated transmittance (TR) and extinction ratio (ER). It was found that TR in both cases tends to decrease monotonically with a longer period (Λ). The maximum TR of bWGPs is lower than cWGPs. On the other hand, maximum ER of bWGPs is much higher than that of cWGPs, particularly at a longer period, with an extinction peak peaked at Λ = 800 nm. For cWGPs, an extinction peak is observed at Λ = 200 nm with comparable enhancement (∼42 dB). We have also computed relative TR (RTR) and relative ER (RER) for assessment of performance relative to cWGP. RTR decreases slowly in a manner similar to TR, however, RER increases exponentially with a longer wire-grid period. The results suggest that strong localization of near-fields observed with bWGPs can be used to improve polarimetric performance of a WGP.

Original languageEnglish
Title of host publicationPhysics and Simulation of Optoelectronic Devices XXVI
EditorsMarek Osinski, Yasuhiko Arakawa, Bernd Witzigmann
PublisherSPIE
ISBN (Electronic)9781510615373
DOIs
Publication statusPublished - 2018 Jan 1
EventPhysics and Simulation of Optoelectronic Devices XXVI 2018 - San Francisco, United States
Duration: 2018 Jan 292018 Feb 1

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10526
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherPhysics and Simulation of Optoelectronic Devices XXVI 2018
CountryUnited States
CitySan Francisco
Period18/1/2918/2/1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Lee, C., Sim, E., & Kim, D. (2018). Numerical analysis of blazed wire-grid polarizer for plasmonic enhancement. In M. Osinski, Y. Arakawa, & B. Witzigmann (Eds.), Physics and Simulation of Optoelectronic Devices XXVI [105262H] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10526). SPIE. https://doi.org/10.1117/12.2291123