Numerical evaluation of the performance of injection/extraction well pair operation strategies with temporally variable injection/pumping rates

Heejun Suk, Jui Sheng Chen, Eungyu Park, Weon Shik Han, You Hong Kihm

Research output: Contribution to journalArticlepeer-review

Abstract

In general, in situ remediation techniques require that treatment agents come into contact with contaminants to facilitate the treatment process. Greater contact causes more in situ mixing of the two compounds and greater contaminant reduction. In a recirculation well system featuring an injection/extraction well pair, delivery controls the remedial and economic efficiency of decontamination, and is therefore a key consideration for successful in situ remediation. In this study, we numerically evaluated the remedial and economic efficiency of a recirculation well system with sinusoidal temporally varying pumping and injection rates for enhancing remediation; the results were compared with those of a traditional recirculation well system with constant injection/extraction rates. We performed sensitivity analyses to determine the optimal values of four operational parameters associated with the effects of temporally variable pumping or injection rates on the cumulative swept area of injected chemical amendment for a given operation time or cumulative injected volume, which are good measures of remediation and economic efficiency. The findings of this study provide insight into the mechanical process of plume spreading in response to injection/pumping operational strategies, and demonstrate that enhanced plume spreading is a key requirement for achieving sufficient contact between chemical amendments and contaminants.

Original languageEnglish
Article number126494
JournalJournal of Hydrology
Volume598
DOIs
Publication statusPublished - 2021 Jul

Bibliographical note

Funding Information:
This study was performed through the Korea Institute of Geosciences and Mineral resources (KIGAM). We also appreciate support by the project titled ?Research on rock properties in deep environment for HLW geological disposal (GP2020-002; 21-3115)? funded by the Ministry of Science and ICT, Korea.

Funding Information:
This study was performed through the Korea Institute of Geosciences and Mineral resources (KIGAM). We also appreciate support by the project titled “Research on rock properties in deep environment for HLW geological disposal (GP2020-002; 21-3115)” funded by the Ministry of Science and ICT, Korea.

Publisher Copyright:
© 2021

All Science Journal Classification (ASJC) codes

  • Water Science and Technology

Fingerprint

Dive into the research topics of 'Numerical evaluation of the performance of injection/extraction well pair operation strategies with temporally variable injection/pumping rates'. Together they form a unique fingerprint.

Cite this