O-GlcNAcylation of eIF2α regulates the phospho-eIF2α-mediated ER stress response

Insook Jang, Han Byeol Kim, Hojoong Seo, Jin Young Kim, Hyeonjin Choi, Jong Shin Yoo, Jae woo Kim, Jin Won Cho

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

O-GlcNAcylation is highly involved in cellular stress responses including the endoplasmic reticulum (ER) stress response. For example, glucosamine-induced flux through the hexosamine biosynthetic pathway can promote ER stress and ER stress inducers can change the total cellular level of O-GlcNAcylation. However, it is largely unknown which component(s) of the unfolded protein response (UPR) is directly regulated by O-GlcNAcylation. In this study, eukaryotic translation initiation factor 2α (eIF2α), a major branch of the UPR, was O-GlcNAcylated at Ser 219, Thr 239, and Thr 241. Upon ER stress, eIF2α is phosphorylated at Ser 51 by phosphorylated PKR-like ER kinase and this inhibits global translation initiation, except for that of specific mRNAs, including activating transcription factor 4, that induce stress-responsive genes such as C/EBP homologous protein (CHOP). Hyper-. O-GlcNAcylation induced by O-GlcNAcase inhibitor (thiamet-G) treatment or O-GlcNAc transferase (OGT) overexpression hindered phosphorylation of eIF2α at Ser 51. The level of O-GlcNAcylation of eIF2α was changed by dithiothreitol treatment dependent on its phosphorylation at Ser 51. Point mutation of the O-GlcNAcylation sites of eIF2α increased its phosphorylation at Ser 51 and CHOP expression and resulted in increased apoptosis upon ER stress. These results suggest that O-GlcNAcylation of eIF2α affects its phosphorylation at Ser 51 and influences CHOP-mediated cell death. This O-GlcNAcylation of eIF2α was reproduced in thiamet-G-injected mouse liver. In conclusion, proper regulation of O-GlcNAcylation and phosphorylation of eIF2α is important to maintain cellular homeostasis upon ER stress.

Original languageEnglish
Pages (from-to)1860-1869
Number of pages10
JournalBiochimica et Biophysica Acta - Molecular Cell Research
Volume1853
Issue number8
DOIs
Publication statusPublished - 2015 Aug 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cell Biology

Cite this