Observation of the S01→P03 clock transition in Al+27

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C.J. Koelemeij, J. C. Bergquist, D. J. Wineland

Research output: Contribution to journalArticle

171 Citations (Scopus)


We report, for the first time, laser spectroscopy of the S01→P03 clock transition in Al+27. A single aluminum ion and a single beryllium ion are simultaneously confined in a linear Paul trap, coupled by their mutual Coulomb repulsion. This coupling allows the beryllium ion to sympathetically cool the aluminum ion and also enables transfer of the aluminum's electronic state to the beryllium's hyperfine state, which can be measured with high fidelity. These techniques are applied to measure the clock transition frequency ν=1121015393207851(6)Hz. They are also used to measure the lifetime of the metastable clock state τ=20.6±1.4s, the ground state S01 g factor gS=-0.00079248(14), and the excited state P03 g factor gP=-0.00197686(21), in units of the Bohr magneton.

Original languageEnglish
Article number220801
JournalPhysical review letters
Issue number22
Publication statusPublished - 2007 May 31

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Observation of the S01→P03 clock transition in Al+27'. Together they form a unique fingerprint.

  • Cite this

    Rosenband, T., Schmidt, P. O., Hume, D. B., Itano, W. M., Fortier, T. M., Stalnaker, J. E., Kim, K., Diddams, S. A., Koelemeij, J. C. J., Bergquist, J. C., & Wineland, D. J. (2007). Observation of the S01→P03 clock transition in Al+27. Physical review letters, 98(22), [220801]. https://doi.org/10.1103/PhysRevLett.98.220801