On the grading numbers of direct products of chains

C. C. Chen, K. M. Koh, Sung chul Lee

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

For a finite lattice L, denote by l*(L) and l*(L) respectively the upper length and lower length of L. The grading number g(L) of L is defined as g(L) = l*(Sub(L))-l*(Sub(L)) where Sub(L) is the sublattice-lattice of L. We show that if K is a proper homomorphic image of a distributive lattice L, then l*(Sub(K)) < l*(Sub(L)); and derive from this result, formulae for l*(Sub(L)) and g(L) where L is a product of chains.

Original languageEnglish
Pages (from-to)21-26
Number of pages6
JournalDiscrete Mathematics
Volume49
Issue number1
DOIs
Publication statusPublished - 1984 Jan 1

Fingerprint

Grading
Direct Product
Distributive Lattice
Homomorphic
Denote

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

Cite this

Chen, C. C. ; Koh, K. M. ; Lee, Sung chul. / On the grading numbers of direct products of chains. In: Discrete Mathematics. 1984 ; Vol. 49, No. 1. pp. 21-26.
@article{0fd3c0f7959247c49c7c98e84b3a0269,
title = "On the grading numbers of direct products of chains",
abstract = "For a finite lattice L, denote by l*(L) and l*(L) respectively the upper length and lower length of L. The grading number g(L) of L is defined as g(L) = l*(Sub(L))-l*(Sub(L)) where Sub(L) is the sublattice-lattice of L. We show that if K is a proper homomorphic image of a distributive lattice L, then l*(Sub(K)) < l*(Sub(L)); and derive from this result, formulae for l*(Sub(L)) and g(L) where L is a product of chains.",
author = "Chen, {C. C.} and Koh, {K. M.} and Lee, {Sung chul}",
year = "1984",
month = "1",
day = "1",
doi = "10.1016/0012-365X(84)90147-X",
language = "English",
volume = "49",
pages = "21--26",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "1",

}

On the grading numbers of direct products of chains. / Chen, C. C.; Koh, K. M.; Lee, Sung chul.

In: Discrete Mathematics, Vol. 49, No. 1, 01.01.1984, p. 21-26.

Research output: Contribution to journalArticle

TY - JOUR

T1 - On the grading numbers of direct products of chains

AU - Chen, C. C.

AU - Koh, K. M.

AU - Lee, Sung chul

PY - 1984/1/1

Y1 - 1984/1/1

N2 - For a finite lattice L, denote by l*(L) and l*(L) respectively the upper length and lower length of L. The grading number g(L) of L is defined as g(L) = l*(Sub(L))-l*(Sub(L)) where Sub(L) is the sublattice-lattice of L. We show that if K is a proper homomorphic image of a distributive lattice L, then l*(Sub(K)) < l*(Sub(L)); and derive from this result, formulae for l*(Sub(L)) and g(L) where L is a product of chains.

AB - For a finite lattice L, denote by l*(L) and l*(L) respectively the upper length and lower length of L. The grading number g(L) of L is defined as g(L) = l*(Sub(L))-l*(Sub(L)) where Sub(L) is the sublattice-lattice of L. We show that if K is a proper homomorphic image of a distributive lattice L, then l*(Sub(K)) < l*(Sub(L)); and derive from this result, formulae for l*(Sub(L)) and g(L) where L is a product of chains.

UR - http://www.scopus.com/inward/record.url?scp=48749137926&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=48749137926&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(84)90147-X

DO - 10.1016/0012-365X(84)90147-X

M3 - Article

AN - SCOPUS:48749137926

VL - 49

SP - 21

EP - 26

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1

ER -