TY - JOUR
T1 - On the multiplicities of the zeros of laguerre-pólya functions
AU - Kamimoto, Joe
AU - Ki, Haseo
AU - Kim, Young One
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2000
Y1 - 2000
N2 - We show that all the zeros of the Fourier transforms of the functions exp(-x2m), m = 1,2,⋯, are real and simple. Then, using this result, we show that there are infinitely many polynomials p(x1,⋯, xn) such that for each (m1,⋯, mn) ∈ (ℕ \ {0})n the translates of the function p(x1,⋯, xn)exp (-∑j=1nxj2mj) generate L1(ℝn). Finally, we discuss the problem of finding the minimum number of monomials pα(x1,⋯, xn), α ∈ A, which have the property that the translates of the functions pα(x1,⋯, xn)exp(-∑j=1nxj2mj), α ∈ A, generate L1ℝn), for a given (m1,⋯,mn) ∈ (ℕ\{0})n.
AB - We show that all the zeros of the Fourier transforms of the functions exp(-x2m), m = 1,2,⋯, are real and simple. Then, using this result, we show that there are infinitely many polynomials p(x1,⋯, xn) such that for each (m1,⋯, mn) ∈ (ℕ \ {0})n the translates of the function p(x1,⋯, xn)exp (-∑j=1nxj2mj) generate L1(ℝn). Finally, we discuss the problem of finding the minimum number of monomials pα(x1,⋯, xn), α ∈ A, which have the property that the translates of the functions pα(x1,⋯, xn)exp(-∑j=1nxj2mj), α ∈ A, generate L1ℝn), for a given (m1,⋯,mn) ∈ (ℕ\{0})n.
UR - http://www.scopus.com/inward/record.url?scp=22844456227&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=22844456227&partnerID=8YFLogxK
U2 - 10.1090/s0002-9939-99-04970-9
DO - 10.1090/s0002-9939-99-04970-9
M3 - Article
AN - SCOPUS:22844456227
VL - 128
SP - 189
EP - 194
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
SN - 0002-9939
IS - 1
ER -