On the n-uniqueness of types in rosy theories

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We prove that in a rosy theory, the n-uniqueness of a strong type p implies the strong n-uniqueness of p. In addition we study some of the boundary properties of p.

Original languageEnglish
Pages (from-to)677-686
Number of pages10
JournalArchive for Mathematical Logic
Volume55
Issue number5-6
DOIs
Publication statusPublished - 2016 Aug 1

Fingerprint

Uniqueness
Imply

All Science Journal Classification (ASJC) codes

  • Logic
  • Philosophy

Cite this

@article{b4cd3149ebb94365b6dd5a9d952bbe2d,
title = "On the n-uniqueness of types in rosy theories",
abstract = "We prove that in a rosy theory, the n-uniqueness of a strong type p implies the strong n-uniqueness of p. In addition we study some of the boundary properties of p.",
author = "Byunghan Kim",
year = "2016",
month = "8",
day = "1",
doi = "10.1007/s00153-016-0487-6",
language = "English",
volume = "55",
pages = "677--686",
journal = "Archive for Mathematical Logic",
issn = "0933-5846",
publisher = "Springer New York",
number = "5-6",

}

On the n-uniqueness of types in rosy theories. / Kim, Byunghan.

In: Archive for Mathematical Logic, Vol. 55, No. 5-6, 01.08.2016, p. 677-686.

Research output: Contribution to journalArticle

TY - JOUR

T1 - On the n-uniqueness of types in rosy theories

AU - Kim, Byunghan

PY - 2016/8/1

Y1 - 2016/8/1

N2 - We prove that in a rosy theory, the n-uniqueness of a strong type p implies the strong n-uniqueness of p. In addition we study some of the boundary properties of p.

AB - We prove that in a rosy theory, the n-uniqueness of a strong type p implies the strong n-uniqueness of p. In addition we study some of the boundary properties of p.

UR - http://www.scopus.com/inward/record.url?scp=84964290630&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964290630&partnerID=8YFLogxK

U2 - 10.1007/s00153-016-0487-6

DO - 10.1007/s00153-016-0487-6

M3 - Article

AN - SCOPUS:84964290630

VL - 55

SP - 677

EP - 686

JO - Archive for Mathematical Logic

JF - Archive for Mathematical Logic

SN - 0933-5846

IS - 5-6

ER -