On the reclose operation of superconducting fault current controller for smart power grid with increasing dg

Jae Woong Shim, Taesik Nam, Sehyun Kim, Kyeon Hur

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

At present, the operation of protection coordination in a complex and uncertain power distribution system is satisfied through the use of a recloser and fuse. Due to the increased adoption of renewable energy resources, distributed energy resources as well as expanded electric transportation and dynamic demand response technologies in the power industry confront significant challenges during grid operations. As a result, protection coordination may be broken due to an increase in the current level in a power system. In general, once the protection is well coordinated by a fault current controller (FCC), the previously installed recloser on the existing power distribution system becomes useless because the FCC plays the role of the recloser. In this work, we propose an operating strategy of protection coordination for the FCC, which is capable of replacing the recloser in an environment where various types of distributed generation are introduced simultaneously due to the proliferating demand of renewable energy sources. Specifically, the suggested method based on PSCAD/EMTDC is investigated.

Original languageEnglish
Article number6387288
JournalIEEE Transactions on Applied Superconductivity
Volume23
Issue number3
DOIs
Publication statusPublished - 2013

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'On the reclose operation of superconducting fault current controller for smart power grid with increasing dg'. Together they form a unique fingerprint.

Cite this