## Abstract

This paper provides a comparative study of two alternative methodologies for the solution of an inverse design solidification problem. It is the one‐dimensional solidification problem of calculating the boundary heat flux history that achieves a desired freezing front velocity and desired heat fluxes at the freezing front. The front velocity h(t) and flux history q_{mS}(t) on the solid side of the front control the obtained cast structure. As such, the potential applications of the proposed methods to the control of casting processes are enormous. The first technique utilizes a finite‐dimensional approximation of the unknown boundary heat flux function q_{0}(t). The second technique uses the adjoint method to calculate in L_{2} the derivative of the cost functional, ‖T_{m} – T(h(t), t;q_{0})‖ 2L 2, that expresses the square error between the calculated T(h(t), t; q_{0}) and the given freezing front temperature T_{m}. Both steepest descent (SDM) and conjugate gradient methods (CGM) are examined. A front tracking FEM technique is used for the discretization of the state space. A detailed numerical analysis of the space and time discretization of the ‘parameter’ and state spaces, of the effect of the end condition of the adjoint problem and of other parameters in the solution are examined.

Original language | English |
---|---|

Pages (from-to) | 3973-3990 |

Number of pages | 18 |

Journal | International Journal for Numerical Methods in Engineering |

Volume | 36 |

Issue number | 23 |

DOIs | |

Publication status | Published - 1993 Dec 15 |

## All Science Journal Classification (ASJC) codes

- Numerical Analysis
- Engineering(all)
- Applied Mathematics