On the submicron aerosol distributions and CCN number concentrations in and around the Korean Peninsula

J. H. Kim, S. S. Yum, S. Shim, W. J. Kim, M. Park, J. H. Kim, M. H. Kim, S. C. Yoon

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Total number concentrations of particles having a diameter larger than 10 nm (NCN), cloud condensation nuclei at several supersaturation (S) values (NCCN) and number size distributions of particles with 10-414 nm diameter were measured in Seoul between 2004 and 2010. Overall average values of NCN and geometric mean diameter were 17 811 ± 5581 cmĝ̂'3 and 48 ± 6 nm. Average NCCN at 0.4, 0.6 and 0.8% S were 4145 ± 2016, 5323 ± 2453 and 6067 ± 2780 cmĝ̂'3 and corresponding NCCN / NCN were 0.26 ± 0.11, 0.33 ± 0.11 and 0.37 ± 0.12. There is a clear seasonal variation in aerosol concentration, which seems to be due to the monsoon. NCN and NCCN are also found to depend on the volume of traffic and the height of the planetary boundary layer, respectively.

During aircraft campaigns in 2009 and 2011, NCN and NCCN at 0.6% S (N0.6%) were measured in and around the Korean Peninsula. During the 2011 campaign, the aerosol scattering coefficient was also measured. NCN and N0.6% in the lower altitudes were generally higher than at higher altitudes, except for cases when particle formation and growth events were thought to occur at higher altitudes. NCN and N0.6% generally show a positive correlation with aerosol scattering coefficients but this correspondence tends to vary with altitude. Occasional instances of low (< 0.3) N0.6% / NCN in the boundary layer are demonstrated to be associated with particle formation and growth events. With the support of ground measurements, it is confirmed that a particle formation and growth event did indeed occur over the Yellow Sea on a flight day, and the areal extent of this event is estimated to be greater than 100 km × 450 km.

With the combination of the current and several relevant previous studies, a composite map of NCN and NCCN in and around the Korean Peninsula is produced. Overall, the exhibited concentrations are typical of values measured over polluted regions elsewhere on the globe. Moreover, there is a generally decreasing trend from west to east over the region, implying that the region is constantly under the dominant influence of continental outflow.

Original languageEnglish
Pages (from-to)8763-8779
Number of pages17
JournalAtmospheric Chemistry and Physics
Volume14
Issue number16
DOIs
Publication statusPublished - 2014 Aug 26

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint Dive into the research topics of 'On the submicron aerosol distributions and <sub>CCN</sub> number concentrations in and around the Korean Peninsula'. Together they form a unique fingerprint.

  • Cite this