On the titchmarsh divisor problem for abelian varieties

Cristian Virdol

Research output: Contribution to journalArticle

Abstract

In this article we study the Titchmarsh divisor problem in the context of abelian varieties. Under the Generalized Riemann Hypothesis we obtain an asymptotic formula.

Original languageEnglish
Pages (from-to)3681-3687
Number of pages7
JournalProceedings of the American Mathematical Society
Volume145
Issue number9
DOIs
Publication statusPublished - 2017 Jan 1

Fingerprint

Riemann hypothesis
Abelian Variety
Asymptotic Formula
Divisor
Context

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Applied Mathematics

Cite this

@article{bb5c2ede693d42eea259dae493a2c4e3,
title = "On the titchmarsh divisor problem for abelian varieties",
abstract = "In this article we study the Titchmarsh divisor problem in the context of abelian varieties. Under the Generalized Riemann Hypothesis we obtain an asymptotic formula.",
author = "Cristian Virdol",
year = "2017",
month = "1",
day = "1",
doi = "10.1090/proc/13519",
language = "English",
volume = "145",
pages = "3681--3687",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "9",

}

On the titchmarsh divisor problem for abelian varieties. / Virdol, Cristian.

In: Proceedings of the American Mathematical Society, Vol. 145, No. 9, 01.01.2017, p. 3681-3687.

Research output: Contribution to journalArticle

TY - JOUR

T1 - On the titchmarsh divisor problem for abelian varieties

AU - Virdol, Cristian

PY - 2017/1/1

Y1 - 2017/1/1

N2 - In this article we study the Titchmarsh divisor problem in the context of abelian varieties. Under the Generalized Riemann Hypothesis we obtain an asymptotic formula.

AB - In this article we study the Titchmarsh divisor problem in the context of abelian varieties. Under the Generalized Riemann Hypothesis we obtain an asymptotic formula.

UR - http://www.scopus.com/inward/record.url?scp=85021451440&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85021451440&partnerID=8YFLogxK

U2 - 10.1090/proc/13519

DO - 10.1090/proc/13519

M3 - Article

VL - 145

SP - 3681

EP - 3687

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 9

ER -