On uniqueness in the extended selberg class of dirichlet series

Haseo Ki, Bao Qin Li

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We will show that two functions in the extended Selberg class satisfying the same functional equation must be identically equal if they have sufficiently many common zeros.

Original languageEnglish
Pages (from-to)4169-4173
Number of pages5
JournalProceedings of the American Mathematical Society
Volume141
Issue number12
DOIs
Publication statusPublished - 2013 Oct 4

Fingerprint

Selberg Class
Dirichlet Series
Functional equation
Uniqueness
Zero

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Applied Mathematics

Cite this

@article{7bf6b8c7d69b44eb94e92e4fc4c06f5e,
title = "On uniqueness in the extended selberg class of dirichlet series",
abstract = "We will show that two functions in the extended Selberg class satisfying the same functional equation must be identically equal if they have sufficiently many common zeros.",
author = "Haseo Ki and Li, {Bao Qin}",
year = "2013",
month = "10",
day = "4",
doi = "10.1090/S0002-9939-2013-11749-1",
language = "English",
volume = "141",
pages = "4169--4173",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "12",

}

On uniqueness in the extended selberg class of dirichlet series. / Ki, Haseo; Li, Bao Qin.

In: Proceedings of the American Mathematical Society, Vol. 141, No. 12, 04.10.2013, p. 4169-4173.

Research output: Contribution to journalArticle

TY - JOUR

T1 - On uniqueness in the extended selberg class of dirichlet series

AU - Ki, Haseo

AU - Li, Bao Qin

PY - 2013/10/4

Y1 - 2013/10/4

N2 - We will show that two functions in the extended Selberg class satisfying the same functional equation must be identically equal if they have sufficiently many common zeros.

AB - We will show that two functions in the extended Selberg class satisfying the same functional equation must be identically equal if they have sufficiently many common zeros.

UR - http://www.scopus.com/inward/record.url?scp=84884751607&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84884751607&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-2013-11749-1

DO - 10.1090/S0002-9939-2013-11749-1

M3 - Article

AN - SCOPUS:84884751607

VL - 141

SP - 4169

EP - 4173

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 12

ER -